Straining Graphene Using Thin Film Shrinkage Methods

被引:62
作者
Shioya, Hiroki [1 ]
Craciun, Monica F. [2 ]
Russo, Saverio [2 ]
Yamamoto, Michihisa [1 ]
Tarucha, Seigo [1 ,3 ]
机构
[1] Univ Tokyo, Dept Appl Phys, Tokyo 113, Japan
[2] Univ Exeter, Ctr Graphene Sci, CEMPS, Exeter EX4, Devon, England
[3] RIKEN, CEMS, Wako, Saitama, Japan
基金
英国工程与自然科学研究理事会;
关键词
Graphene; planar process; shrinkage of thin films; tensile and compressive strain; Raman spectrum; strain engineering of two-dimensional crystals; FIELD-EFFECT TRANSISTORS; MONOLAYER;
D O I
10.1021/nl403679f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Theoretical works suggest the possibility and usefulness of strain engineering of graphene by predicting remarkable properties, such as Dirac cone merging, bandgap opening and pseudo magnetic field generation. However, most of these predictions have not yet been confirmed because it is experimentally difficult to control the magnitude and type (e.g., uniaxial, biaxial, and so forth) of strain in graphene devices. Here we report two novel methods to apply strain without bending the substrate. We employ thin films of evaporated metal and organic insulator deposited on graphene, which shrink after electron beam irradiation or heat application. These methods make it possible to apply both biaxial strain and in-plane isotropic compressive strain in a well-controlled manner. Raman spectroscopy measurements show a clear splitting of the degenerate states of the G-band in the case of biaxial strain, and G-band blue shift without splitting in the case of in-plane isotropic compressive strain. In the case of biaxial strain application, we find out the ratio of the strain component perpendicular to the stretching direction is at least three times larger than what was previously observed, indicating that shrinkage of the metal or organic insulator deposited on graphene induces both tensile and compressive strain in this atomically thin material. Our studies present for the first time a viable way to apply strain to graphene without the need to bend the substrate.
引用
收藏
页码:1158 / 1163
页数:6
相关论文
共 34 条
[1]   Making graphene visible [J].
Blake, P. ;
Hill, E. W. ;
Castro Neto, A. H. ;
Novoselov, K. S. ;
Jiang, D. ;
Yang, R. ;
Booth, T. J. ;
Geim, A. K. .
APPLIED PHYSICS LETTERS, 2007, 91 (06)
[2]   Tuneable electronic properties in graphene [J].
Craciun, M. F. ;
Russo, S. ;
Yamamoto, M. ;
Tarucha, S. .
NANO TODAY, 2011, 6 (01) :42-60
[3]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[4]   Strain engineering in graphene [J].
Guinea, F. .
SOLID STATE COMMUNICATIONS, 2012, 152 (15) :1437-1441
[5]   Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering [J].
Guinea, F. ;
Katsnelson, M. I. ;
Geim, A. K. .
NATURE PHYSICS, 2010, 6 (01) :30-33
[6]   High-Performance Flexible Graphene Field Effect Transistors with Ion Gel Gate Dielectrics [J].
Kim, Beom Joon ;
Jang, Houk ;
Lee, Seoung-Ki ;
Hong, Byung Hee ;
Ahn, Jong-Hyun ;
Cho, Jeong Ho .
NANO LETTERS, 2010, 10 (09) :3464-3466
[7]  
Kim K., NAURE, V479, P338
[8]   Large-scale pattern growth of graphene films for stretchable transparent electrodes [J].
Kim, Keun Soo ;
Zhao, Yue ;
Jang, Houk ;
Lee, Sang Yoon ;
Kim, Jong Min ;
Kim, Kwang S. ;
Ahn, Jong-Hyun ;
Kim, Philip ;
Choi, Jae-Young ;
Hong, Byung Hee .
NATURE, 2009, 457 (7230) :706-710
[9]   Reliably Counting Atomic Planes of Few-Layer Graphene (n > 4) [J].
Koh, Yee Kan ;
Bae, Myung-Ho ;
Cahill, David G. ;
Pop, Eric .
ACS NANO, 2011, 5 (01) :269-274
[10]   Measurement of the elastic properties and intrinsic strength of monolayer graphene [J].
Lee, Changgu ;
Wei, Xiaoding ;
Kysar, Jeffrey W. ;
Hone, James .
SCIENCE, 2008, 321 (5887) :385-388