Tidal end states of binary asteroid systems with a nonspherical component

被引:14
|
作者
Taylor, Patrick A. [1 ]
Margot, Jean-Luc [2 ,3 ]
机构
[1] Arecibo Observ, Arecibo, PR 00612 USA
[2] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
Asteroids; Satellites of asteroids; Tides; solid body; dynamics; rotation; STABILITY; DYNAMICS;
D O I
10.1016/j.icarus.2013.11.008
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We derive the locations of the fully synchronous end states of tidal evolution for binary asteroid systems having one spherical component and one oblate- or prolate-spheroid component. Departures from a spherical shape, at levels observed among binary asteroids, can result in the lack of a stable tidal end state for particular combinations of the system mass fraction and angular momentum, in which case the binary must collapse to contact. We illustrate our analytical results with near-Earth Asteroids (8567) 1996 HW1, (66391) 1999 KW4, and 69230 Hermes. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:418 / 422
页数:5
相关论文
共 40 条
  • [31] Dimensions and equilibrium structures of the primary component of the nonsynchronous binary systems
    Pathania, A.
    Medupe, T.
    NEW ASTRONOMY, 2014, 26 : 1 - 11
  • [32] Tidal effects in the equations of motion of compact binary systems to next-to-next-to-leading post-Newtonian order
    Henry, Quentin
    Faye, Guillaume
    Blanchet, Luc
    PHYSICAL REVIEW D, 2020, 101 (06)
  • [33] Asteroid flux towards circumprimary habitable zones in binary star systems I. Statistical overview
    Bancelin, D.
    Pilat-Lohinger, E.
    Eggl, S.
    Maindl, T. I.
    Schaefer, C.
    Speith, R.
    Dvorak, R.
    ASTRONOMY & ASTROPHYSICS, 2015, 581
  • [34] Tidal effects in the gravitational-wave phase evolution of compact binary systems to next-to-next-to-leading post-Newtonian order
    Henry, Quentin
    Faye, Guillaume
    Blanchet, Luc
    PHYSICAL REVIEW D, 2020, 102 (04)
  • [35] Dynamics of two-dimensional one-component and binary Yukawa systems in a magnetic field
    Ott, T.
    Loewen, H.
    Bonitz, M.
    PHYSICAL REVIEW E, 2014, 89 (01):
  • [36] Underestimation of the tidal force and apsidal motion in close binary systems by the perturbative approach: Comparisons with non-perturbative models
    Fellay, L.
    Dupret, M. -A.
    Rosu, S.
    ASTRONOMY & ASTROPHYSICS, 2024, 683
  • [37] Turbulence in the Accretion Disks in Semi-Detached Binary Systems with Various Component-Mass Ratios
    Kurbatov, E. P.
    Fateeva, A. M.
    Kaigorodov, P. V.
    Bisikalo, D. V.
    ASTRONOMY REPORTS, 2018, 62 (11) : 781 - 786
  • [38] Structural relationship between crystalline and amorphous states in Cu-(Zr, Ti) binary systems
    Zhang, Shuang
    Dong, Chuang
    Haeussler, Peter
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (07)
  • [39] Stationary states of irrotational binary neutron star systems and their evolution as a result of gravitational wave emission
    Uryu, K
    Eriguchi, Y
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1998, 296 (01) : L1 - L5
  • [40] Dynamics of two-component biochemical systems in interacting cells; Synchronization and desynchronization of oscillations and multiple steady states
    Wolf, J
    Heinrich, R
    BIOSYSTEMS, 1997, 43 (01) : 1 - 24