On the spectral gap for infinite index "congruence" subgroups of SL2(Z)

被引:58
作者
Gamburd, A [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
D O I
10.1007/BF02784530
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A celebrated theorem of Selberg states that for congruence subgroups of SL2(Z) there are no exceptional eigenvalues below 3/16. Extending the work of Sarnak and Xue for cocompact arithmetic lattices, we prove a generalization of Selberg's theorem for infinite index "congruence" subgroups of SL2(Z). For such subgroups with a high enough Hausdorff dimension of the limit set we establish a spectral gap property and consequently solve a problem of Lubotzky pertaining to expander graphs.
引用
收藏
页码:157 / 200
页数:44
相关论文
共 51 条
[1]  
ALPERIN RC, 1987, ENSEIGNEMENT MATH, V33, P269
[2]  
[Anonymous], FONCTIONS SPHERIQUES
[3]  
[Anonymous], 1995, London Mathematical Society Lecture Note Series
[4]  
Beardon A. F., 1983, GEOMETRY DISCRETE GR
[5]  
Buser P., 1992, Progress in Mathematics, Vvol. 106
[6]  
COURANT R, 1953, METHODS MATH PHYSICS
[7]  
DAVIDOFF G, UNPUB RAMANUJAN GRAP
[8]   WEAK CONTAINMENT AND INDUCED REPRESENTATIONS OF GROUPS [J].
FELL, JMG .
CANADIAN JOURNAL OF MATHEMATICS, 1962, 14 (02) :237-&
[9]  
Gamburd A., 1999, J EUR MATH SOC, V1, P51
[10]  
GELBART S, 1978, ANN SCI ECOLE NORM S, V11, P471