Electronic Modulation of Near-Field Radiative Transfer in Graphene Field Effect Heterostructures

被引:47
作者
Thomas, Nathan H. [1 ]
Sherrott, Michelle C. [2 ,3 ]
Broulliet, Jeremy [2 ]
Atwater, Harry A. [1 ,2 ]
Minnich, Austin J. [1 ]
机构
[1] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA
[2] CALTECH, Thomas J Watson Lab Appl Phys, Pasadena, CA 91125 USA
[3] MIT, Res Lab Elect, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Near-field radiative transfer; graphene; electronic modulation; thermal switches; HEAT-TRANSFER;
D O I
10.1021/acs.nanolett.9b01086
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Manipulating heat flow in a controllable and reversible manner is a topic of fundamental and practical interest. Numerous approaches to perform thermal switching have been reported, but they typically suffer from various limitations, for instance requiring mechanical modulation of a submicron gap spacing or only operating in a narrow temperature window. Here, we report the experimental modulation of radiative heat flow by electronic gating of a graphene field effect heterostructure without any moving elements. We measure a maximum heat flux modulation of 4 +/- 3% and an absolute modulation depth of 24 +/- 7 mW m(-2 )V(-1) in samples with vacuum gap distances ranging from 1 to 3 mu m. The active area in the samples through which heat is transferred is similar to 1 cm(2), indicating the scalable nature of these structures. A clear experimental path exists to realize switching ratios as large as 100%, laying the foundation for electronic control of near-field thermal radiation using 2D materials.
引用
收藏
页码:3898 / 3904
页数:7
相关论文
共 63 条
[41]   A Green's function formalism of energy and momentum transfer in fluctuational electrodynamics [J].
Narayanaswamy, A. ;
Zheng, Y. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2014, 132 :12-21
[42]   Near-field radiative heat transfer between a sphere and a substrate [J].
Narayanaswamy, Arvind ;
Shen, Sheng ;
Chen, Gang .
PHYSICAL REVIEW B, 2008, 78 (11)
[43]   Thermal Rectification through Vacuum [J].
Otey, Clayton R. ;
Lau, Wah Tung ;
Fan, Shanhui .
PHYSICAL REVIEW LETTERS, 2010, 104 (15)
[44]   Gate-Tunable Near-Field Heat Transfer [J].
Papadakis, Georgia T. ;
Zhao, Bo ;
Buddhiraju, Siddharth ;
Fan, Shanhui .
ACS PHOTONICS, 2019, 6 (03) :709-719
[45]   THEORY OF RADIATIVE HEAT TRANSFER BETWEEN CLOSELY SPACED BODIES [J].
POLDER, D ;
VANHOVE, M .
PHYSICAL REVIEW B, 1971, 4 (10) :3303-&
[46]   Frequency-Selective Near-Field Radiative Heat Transfer between Photonic Crystal Slabs: A Computational Approach for Arbitrary Geometries and Materials [J].
Rodriguez, Alejandro W. ;
Ilic, Ognjen ;
Bermel, Peter ;
Celanovic, Ivan ;
Joannopoulos, John D. ;
Soljacic, Marin ;
Johnson, Steven G. .
PHYSICAL REVIEW LETTERS, 2011, 107 (11)
[47]  
Rytov S. M., 1987, PRINCIPLES STAT RADI, V2, DOI [10.1007/978-3-642-69201-7, DOI 10.1007/978-3-642-69201-7]
[48]   Near-field spectral effects due to electromagnetic surface excitations [J].
Shchegrov, AV ;
Joulain, K ;
Carminati, R ;
Greffet, JJ .
PHYSICAL REVIEW LETTERS, 2000, 85 (07) :1548-1551
[49]   Surface Phonon Polaritons Mediated Energy Transfer between Nanoscale Gaps [J].
Shen, Sheng ;
Narayanaswamy, Arvind ;
Chen, Gang .
NANO LETTERS, 2009, 9 (08) :2909-2913
[50]   Experimental Demonstration of >230° Phase Modulation in Gate-Tunable Graphene-Gold Reconfigurable Mid-Infrared Metasurfaces [J].
Sherrott, Michelle C. ;
Hon, Philip W. C. ;
Fountaine, Katherine T. ;
Garcia, Juan C. ;
Ponti, Samuel M. ;
Brar, Victor W. ;
Sweatlock, Luke A. ;
Atwater, Harry A. .
NANO LETTERS, 2017, 17 (05) :3027-3034