Dynamic programming approach to the numerical solution of optimal control with paradigm by a mathematical model for drug therapies of HIV/AIDS

被引:6
作者
Guo, Bao-Zhu [1 ,3 ]
Sun, Bing [2 ,3 ]
机构
[1] Acad Sinica, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Beijing Inst Technol, Sch Math, Beijing 100081, Peoples R China
[3] Univ Witwatersrand, Sch Computat & Appl Math, Johannesburg, South Africa
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Optimal control; Viscosity solution; Dynamic programming; Numerical solution; JACOBI-BELLMAN EQUATIONS; FEEDBACK-CONTROL; MULTIDRUG THERAPIES; HIV;
D O I
10.1007/s11081-012-9204-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we present a new numerical algorithm to find the optimal control for the general nonlinear lumped systems without state constraints. The dynamic programming-viscosity solution (DPVS) approach is developed and the numerical solutions of both approximate optimal control and trajectory are produced. To show the effectiveness and efficiency of new algorithm, we apply it to an optimal control problem of two types of drug therapies for human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS). The quality of the obtained optimal control and the trajectory pair is checked through comparison with the costs under the arbitrarily selected different controls. The results illustrate the effectiveness of the algorithm.
引用
收藏
页码:119 / 136
页数:18
相关论文
共 50 条
[31]   Optimal control of the chemotherapy of HIV [J].
Kirschner, D ;
Lenhart, S ;
Serbin, S .
JOURNAL OF MATHEMATICAL BIOLOGY, 1997, 35 (07) :775-792
[32]  
Kirschner Denise E., 1998, Journal of Biological Systems, V6, P71, DOI 10.1142/S0218339098000091
[33]   DIFFERENTIAL DYNAMIC-PROGRAMMING TECHNIQUE FOR OPTIMAL-CONTROL [J].
LIN, TC ;
ARORA, JS .
OPTIMAL CONTROL APPLICATIONS & METHODS, 1994, 15 (02) :77-100
[34]  
MAYNE DQ, 1975, J OPTIMIZ THEORY APP, V16, P277, DOI 10.1007/BF01262937
[35]  
Mirica S, 2008, MATH REV LENHART WOR
[36]  
Nowak M.A., 2000, Virus Dynamics: Mathematical Principles of Immunology and Virology
[37]   Mathematical analysis of HIV-1 dynamics in vivo [J].
Perelson, AS ;
Nelson, PW .
SIAM REVIEW, 1999, 41 (01) :3-44
[38]  
Press W. H., 1992, NUMERICAL RECIPES AR, V2nd
[39]   Optimal Control of HIV-Virus Dynamics [J].
Radisavljevic-Gajic, Verica .
ANNALS OF BIOMEDICAL ENGINEERING, 2009, 37 (06) :1251-1261
[40]   Numerical solution of Hamilton-Jacobi-Bellman equations by an exponentially fitted finite volume method [J].
Richardson, S ;
Wang, S .
OPTIMIZATION, 2006, 55 (1-2) :121-140