Precision Higgs couplings in neutral naturalness models: an effective field theory approach

被引:0
|
作者
Heurtier, Lucien [1 ]
Li, Hao-Lin [2 ]
Song, Huayang [1 ]
Su, Shufang [1 ]
Su, Wei [3 ]
Yu, Jiang-Hao [2 ,4 ,5 ]
机构
[1] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA
[2] Chinese Acad Sci, Inst Theoret Phys, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China
[3] Univ Adelaide, Dept Phys, ARC Ctr Excellence Particle Phys Terascale, Adelaide, SA 5005, Australia
[4] Univ Chinese Acad Sci, Sch Phys Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
[5] Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Sch Fundamental Phys & Math Sci, Hangzhou 310024, Peoples R China
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
Supersymmetry Phenomenology;
D O I
10.1007/JHEP02(2021)234
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The Higgs sector in neutral naturalness models provides a portal to the hidden sectors, and thus measurements of Higgs couplings at current and future colliders play a central role in constraining the parameter space of the model. We investigate a class of neutral naturalness models, in which the Higgs boson is a pseudo-Goldstone boson from the universal SO(N)/SO(N - 1) coset structure. Integrating out the radial mode from the spontaneous global symmetry breaking, we obtain various dimension-six operators in the Standard Model effective field theory, and calculate the low energy Higgs effective potential with radiative corrections included. We perform a chi (2) fit to the Higgs coupling precision measurements at current and future colliders and show that the new physics scale could be explored up to 2.3 (2.4) TeV without (with) the Higgs invisible decay channels at future Higgs factories. The limits are comparable to the indirect constraints obtained via electroweak precision measurements.
引用
收藏
页数:27
相关论文
共 1 条
  • [1] Precision Higgs couplings in neutral naturalness models: an effective field theory approach
    Lucien Heurtier
    Hao-Lin Li
    Huayang Song
    Shufang Su
    Wei Su
    Jiang-Hao Yu
    Journal of High Energy Physics, 2021