A Linear Time Algorithm for Quantum 2-SAT

被引:4
|
作者
de Beaudrap, Niel [1 ]
Gharibian, Sevag [2 ]
机构
[1] Univ Oxford, Dept Comp Sci, Oxford, England
[2] Virginia Commonwealth Univ, Dept Comp Sci, Richmond, VA 23284 USA
来源
31ST CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC 2016) | 2016年 / 50卷
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
quantum; 2-SAT; transfer matrix; strongly connected components; limited backtracking; local Hamiltonian;
D O I
10.4230/LIPIcs.CCC.2016.27
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Boolean constraint satisfaction problem 3-SAT is arguably the canonical NP -complete problem. In contrast, 2 -SAT can not only be decided in polynomial time, but in fact in deterministic linear time. In 2006, Bravyi proposed a physically motivated generalization of k -SAT to the quantum setting, defining the problem "quantum k -SAT". He showed that quantum 2-SAT is also solvable in polynomial time on a classical computer, in particular in deterministic time 0(n4), assuming unit -cost arithmetic over a field extension of the rational numbers, where n is the number of variables. In this paper, we present an algorithm for quantum 2 -SAT which runs in linear time, i.e. deterministic time 0(n + m) for n and m the number of variables and clauses, respectively. Our approach exploits the transfer matrix techniques of Laumann et al. [QIC, 2010] used in the study of phase transitions for random quantum 2 -SAT, and bears similarities with both the linear time 2-SAT algorithms of Even, Itai, and Shamir (based on backtracking) [SICOMP, 1976] and Aspvall, Plass, and Tarjan (based on strongly connected components) [IPL, 1979].
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Efficient algorithm for a quantum analogue of 2-SAT
    Bravyi, Sergey
    CROSS DISCIPLINARY ADVANCES IN QUANTUM COMPUTING, 2011, 536 : 33 - 48
  • [2] A QUANTUM VERSION OF SCHONING'S ALGORITHM APPLIED TO QUANTUM 2-SAT
    Farhi, Edward
    Kimmel, Shelby
    Temme, Kristan
    QUANTUM INFORMATION & COMPUTATION, 2016, 16 (13-14) : 1212 - 1227
  • [3] Linear-Time Algorithm for Quantum 2SAT
    Arad, Itai
    Santha, Miklos
    Sundaram, Aarthi
    Zhang, Shengyu
    THEORY OF COMPUTING, 2018, 14 : 1 - 27
  • [4] A Clustering Algorithm based on 2-SAT Problem
    Xiao JingZhong
    Xiao Li
    2011 INTERNATIONAL CONFERENCE ON FUTURE COMPUTER SCIENCE AND APPLICATION (FCSA 2011), VOL 1, 2011, : 401 - 403
  • [5] 2-SAT based Linear Time Optimum Two-Domain Clock Skew Scheduling
    Kohira, Yukihide
    Takahashi, Atsushi
    2014 19TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE (ASP-DAC), 2014, : 173 - 178
  • [6] On 2-SAT and renamable horn
    del Val, A
    SEVENTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-2001) / TWELFTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-2000), 2000, : 279 - 284
  • [7] Random 2-SAT and unsatisfiability
    Verhoeven, Y
    INFORMATION PROCESSING LETTERS, 1999, 72 (3-4) : 119 - 123
  • [8] The number of 2-sat functions
    Béla Bollobás
    Graham R. Brightwell
    Imre Leader
    Israel Journal of Mathematics, 2003, 133 : 45 - 60
  • [9] A remark on random 2-SAT
    Goerdt, A
    DISCRETE APPLIED MATHEMATICS, 1999, 97 : 107 - 110
  • [10] On the Number of 2-SAT Functions
    Ilinca, L.
    Kahn, J.
    COMBINATORICS PROBABILITY & COMPUTING, 2009, 18 (05): : 749 - 764