Degree with Neighborhood Conditions and Highly Hamiltonian Graphs

被引:2
作者
Zhao Kewen [1 ]
Yue Lin [2 ]
Ping Zhang [3 ]
机构
[1] Qiongzhou Univ, Dept Math, Sanya 572200, Hainan, Peoples R China
[2] Jinan Univ, Dept Math, Guangzhou 510632, Guangdong, Peoples R China
[3] Western Michigan Univ, Dept Math & Stat, Kalamazoo, MI 49008 USA
关键词
Weakly vertex-pancyclic; Weakly pancyclic; Vertex-pancyclic; Neighborhood union condition; Degree condition; SUFFICIENT CONDITION;
D O I
10.1007/s10440-008-9328-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1997 Bollobas and Thomason (J. Graph Theory 26: 165-173, 1997) and Brandt (Discrete Appl. Math. 79: 63-66, 1997) defined the weakly pancyclic. In this paper we define weakly vertex-pancyclic and obtain a new sufficient condition for graph to be weakly vertex-pancyclic as the following: if G is a 2-connected graph of order n, and {vertical bar N(u) boolean OR N(v)vertical bar + d(w) : u, v, w is an element of V (G), uv is not an element of E(G), wu, or wv is not an element of E(G)} >= n + 1, then G is weakly vertex-pancyclic. This result also implies a conjecture of Faudree et al.
引用
收藏
页码:487 / 493
页数:7
相关论文
共 11 条
  • [1] Bollobas B, 1997, J GRAPH THEOR, V26, P165, DOI 10.1002/(SICI)1097-0118(199711)26:3<165::AID-JGT7>3.3.CO
  • [2] 2-R
  • [3] Bondy J. A., 1976, Graduate Texts in Mathematics, V290
  • [4] A sufficient condition for all short cycles
    Brandt, S
    [J]. DISCRETE APPLIED MATHEMATICS, 1997, 79 (1-3) : 63 - 66
  • [5] FAUDREE RJ, 1991, ARS COMBINATORIA, V31, P139
  • [6] A new sufficient condition for Hamiltonian graphs
    Gould, Ronald J.
    Zhao, Kewen
    [J]. ARKIV FOR MATEMATIK, 2006, 44 (02): : 299 - 308
  • [7] A new sufficient condition for Hamiltonicity of graphs
    Li, R
    [J]. INFORMATION PROCESSING LETTERS, 2006, 98 (04) : 159 - 161
  • [8] Ore O., 1960, Amer. Math. Monthly, V67, P55, DOI [10.2307/2308928, DOI 10.2307/2308928]
  • [9] Hamiltonian-connected graphs
    Zhao Kewen
    Lai, Hong-Jian
    Zhou, Ju
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (12) : 2707 - 2714
  • [10] New sufficient condition for Hamiltonian graphs
    Zhao, Kewen
    Lai, Hong-Jian
    Shao, Yehong
    [J]. APPLIED MATHEMATICS LETTERS, 2007, 20 (01) : 116 - 122