Secure domination critical graphs

被引:23
作者
Grobler, P. J. P. [2 ]
Mynhardt, C. M. [1 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] Univ Stellenbosch, Dept Math Sci, ZA-7602 Matieland, South Africa
基金
加拿大自然科学与工程研究理事会;
关键词
Secure domination; Protection of a graph; Edge-removal-critical graph; ER-critical graph; ROMAN-EMPIRE; PROTECTION; TREES;
D O I
10.1016/j.disc.2008.05.050
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Secure dominating set X of a graph G is a dominating set with the property that each vertex u is an element of V-G - X is adjacent to a vertex nu is an element of X such that (X - {nu}) U {u} is dominating. The minimum cardinality of such a set is called the secure domination number, denoted by gamma(s)(G). We are interested in the effect of edge removal on gamma(s)(G), and characterize gamma(s) ER-critical graphs, i.e. graphs for which gamma(s)(G - e) > gamma(s)(G) for any edge e of G, bipartite gamma(s)-ER-critical graphs and gamma(s)-ER-critical trees. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:5820 / 5827
页数:8
相关论文
共 18 条
  • [1] Benecke S, 2006, UTILITAS MATHEMATICA, V71, P161
  • [2] BENECKE S, 2004, THESIS U STELLENBOSC
  • [3] Burger A. P., 2004, Journal of Combinatorial Mathematics and Combinatorial Computing, V49, P159
  • [4] Burger A. P., 2004, Journal of Combinatorial Mathematics and Combinatorial Computing, V50, P179
  • [5] Irredundance, secure domination and maximum degree in trees
    Cockayne, E. J.
    [J]. DISCRETE MATHEMATICS, 2007, 307 (01) : 12 - 17
  • [6] Cockayne E. J., 2003, Bulletin of the Institute of Combinatorics and its Applications, V39, P87
  • [7] Cockayne EJ, 2005, UTILITAS MATHEMATICA, V67, P19
  • [8] Roman domination in graphs
    Cockayne, EJ
    Dreyer, PA
    Hedetniemi, SM
    Hedetniemi, ST
    [J]. DISCRETE MATHEMATICS, 2004, 278 (1-3) : 11 - 22
  • [9] Goddard W., 2005, J. Combin. Math. Combin. Comput., V52, P169
  • [10] GROBLER PJP, 1999, THESIS U S AFRICA S