Restoring Anticancer Immune Response by Targeting Tumor-Derived Exosomes With a HSP70 Peptide Aptamer

被引:159
作者
Gobbo, Jessica [1 ,2 ,3 ]
Marcion, Guillaume [1 ,2 ]
Cordonnier, Marine [1 ,2 ]
Dias, Alexandre M. M. [1 ,2 ]
Pernet, Nicolas [1 ,2 ]
Hammann, Arlette [1 ,2 ]
Richaud, Sarah [1 ,2 ]
Mjahed, Hajare [1 ,2 ]
Isambert, Nicolas [1 ,2 ,3 ]
Clausse, Victor [1 ,2 ]
Rebe, Cederic [1 ,2 ,3 ]
Bertaut, Aurelie [3 ,4 ]
Goussot, Vincent [3 ]
Lirussi, Frederic [1 ,5 ]
Ghiringhelli, Francois [1 ,2 ,3 ]
de Thonel, Aurelie [1 ,2 ]
Fumoleau, Pierre [3 ]
Seigneuric, Renaud [1 ,2 ]
Garrido, Carmen [1 ,2 ,3 ,6 ]
机构
[1] INSERM, UMR 866, Lab Excellence LipSTIC, F-21079 Dijon, France
[2] Univ Burgundy, Fac Med & Pharm, Dijon, France
[3] Georges Francois Leclerc Ctr, Dept Med Oncol, Dijon, France
[4] Georges Francois Leclerc Ctr, Dept Biostat, Dijon, France
[5] CHU, Dijon, France
[6] Equipe Labellisee Ligue Natl Canc, Illkirch Graffenstaden, France
来源
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE | 2016年 / 108卷 / 03期
关键词
MEMBRANE HEAT-SHOCK-PROTEIN-70 HSP70; SUPPRESSOR-CELLS; CANCER; MACROPHAGES; MECHANISMS; PHENOTYPE; RELEASE;
D O I
10.1093/jnci/djv330
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Exosomes, via heat shock protein 70 (HSP70) expressed in their membrane, are able to interact with the toll-like receptor 2 (TLR2) on myeloid-derived suppressive cells (MDSCs), thereby activating them. Methods: We analyzed exosomes from mouse (C57Bl/6) and breast, lung, and ovarian cancer patient samples and cultured cancer cells with different approaches, including nanoparticle tracking analysis, biolayer interferometry, FACS, and electron microscopy. Data were analyzed with the Student's t and Mann-Whitney tests. All statistical tests were two-sided. Results: We showed that the A8 peptide aptamer binds to the extracellular domain of membrane HSP70 and used the aptamer to capture HSP70 exosomes from cancer patient samples. The number of HSP70 exosomes was higher in cancer patients than in healthy donors (mean, ng/mL +/- SD = 3.5 +/- 1.7 vs 0.17 +/- 0.11, respectively, P = .004). Accordingly, all cancer cell lines examined abundantly released HSP70 exosomes, whereas "normal" cells did not. HSP70 had higher affinity for A8 than for TLR2; thus, A8 blocked HSP70/TLR2 association and the ability of tumor-derived exosomes to activate MDSCs. Treatment of tumor-bearing C57Bl/6 mice with A8 induced a decrease in the number of MDSCs in the spleen and inhibited tumor progression (n = 6 mice per group). Chemotherapeutic agents such as cisplatin or 5FU increase the amount of HSP70 exosomes, favoring the activation of MDSCs and hampering the development of an antitumor immune response. In contrast, this MDSC activation was not observed if cisplatin or 5FU was combined with A8. As a result, the antitumor effect of the drugs was strongly potentiated. Conclusions: A8 might be useful for quantifying tumor-derived exosomes and for cancer therapy through MDSC inhibition.
引用
收藏
页数:11
相关论文
共 34 条
  • [21] Nagaraj Srinivas, 2009, Cancer Res, V69, P7503, DOI 10.1158/0008-5472.CAN-09-2152
  • [22] Rab27a and Rab27b control different steps of the exosome secretion pathway
    Ostrowski, Matias
    Carmo, Nuno B.
    Krumeich, Sophie
    Fanget, Isabelle
    Raposo, Graca
    Savina, Ariel
    Moita, Catarina F.
    Schauer, Kristine
    Hume, Alistair N.
    Freitas, Rui P.
    Goud, Bruno
    Benaroch, Philippe
    Hacohen, Nir
    Fukuda, Mitsunori
    Desnos, Claire
    Seabra, Miguel C.
    Darchen, Francois
    Amigorena, Sebastian
    Moita, Luis F.
    Thery, Clotilde
    [J]. NATURE CELL BIOLOGY, 2010, 12 (01) : 19 - U61
  • [23] Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET
    Peinado, Hector
    Aleckovic, Masa
    Lavotshkin, Simon
    Matei, Irina
    Costa-Silva, Bruno
    Moreno-Bueno, Gema
    Hergueta-Redondo, Marta
    Williams, Caitlin
    Garcia-Santos, Guillermo
    Ghajar, Cyrus M.
    Nitadori-Hoshino, Ayuko
    Hoffman, Caitlin
    Badal, Karen
    Garcia, Benjamin A.
    Callahan, Margaret K.
    Yuan, Jianda
    Martins, Vilma R.
    Skog, Johan
    Kaplan, Rosandra N.
    Brady, Mary S.
    Wolchok, Jedd D.
    Chapman, Paul B.
    Kang, Yibin
    Bromberg, Jacqueline
    Lyden, David
    [J]. NATURE MEDICINE, 2012, 18 (06) : 883 - +
  • [24] Rebe Cedric, 2013, JAKSTAT, V2, pe23010, DOI 10.4161/jkst.23010
  • [25] Peptides and Aptamers Targeting HSP70: A Novel Approach for Anticancer Chemotherapy
    Rerole, Anne-Laure
    Gobbo, Jessica
    De Thonel, Aurelie
    Schmitt, Elise
    de Barros, Jean Paul Pais
    Hammann, Arlette
    Lanneau, David
    Fourmaux, Eric
    Deminov, Oleg
    Micheau, Olivier
    Lagrost, Laurent
    Colas, Pierre
    Kroemer, Guido
    Garrido, Carmen
    [J]. CANCER RESEARCH, 2011, 71 (02) : 484 - 495
  • [26] Targeting cancer with peptide aptamers
    Seigneuric, Renaud
    Gobbo, Jessica
    Colas, Pierre
    Garrido, Carmen
    [J]. ONCOTARGET, 2011, 2 (07) : 557 - 561
  • [27] Derangement of immune responses by myeloid suppressor cells
    Serafini, P
    De Santo, C
    Marigo, I
    Cingarlini, S
    Dolcetti, L
    Gallina, G
    Zanovello, P
    Bronte, V
    [J]. CANCER IMMUNOLOGY IMMUNOTHERAPY, 2004, 53 (02) : 64 - 72
  • [28] Myeloid suppressor cells in cancer: Recruitment, phenotype, properties, and mechanisms of immune suppression
    Serafini, P
    Borrello, I
    Bronte, V
    [J]. SEMINARS IN CANCER BIOLOGY, 2006, 16 (01) : 53 - 65
  • [29] Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response
    Sinha, Pratima
    Clements, Virginia K.
    Bunt, Stephanie K.
    Albelda, Steven M.
    Ostrand-Rosenberg, Suzanne
    [J]. JOURNAL OF IMMUNOLOGY, 2007, 179 (02) : 977 - 983
  • [30] Detection of irradiation-induced, membrane heat shock protein 70 (Hsp70) in mouse tumors using Hsp70 Fab fragment
    Stangl, Stefan
    Themelis, George
    Friedrich, Lars
    Ntziachristos, Vasilis
    Sarantopoulos, Athanasios
    Molls, Michael
    Skerra, Arne
    Multhoff, Gabriele
    [J]. RADIOTHERAPY AND ONCOLOGY, 2011, 99 (03) : 313 - 316