A matrix model for plane partitions

被引:13
作者
Eynard, B. [1 ]
机构
[1] Inst Phys Theor Saclay, F-91191 Gif Sur Yvette, France
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2009年
关键词
rigorous results in statistical mechanics; matrix models; topology and combinatorics; free boundary problems (theory); SIMPLE EXCLUSION PROCESS; LONGEST INCREASING SUBSEQUENCE; STATISTICAL-MECHANICS; DIMERS; DISTRIBUTIONS; ASYMPTOTICS; BOUNDARY; GEOMETRY; LATTICE; GROWTH;
D O I
10.1088/1742-5468/2009/10/P10011
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We construct a matrix model equivalent (exactly, not asymptotically) to the random plane partition model, with almost arbitrary boundary conditions. Equivalently, it is also a random matrix model for a TASEP-like process with arbitrary boundary conditions. Using the known solution of matrix models, this method allows us to find the large size asymptotic expansion of plane partitions, to all orders. It also allows us to describe several universal regimes. On the algebraic geometry point of view, this gives the Gromov-Witten invariants of C(3) with branes, i.e. the topological vertex, in terms of the symplectic invariants of the mirror's spectral curve.
引用
收藏
页数:72
相关论文
共 74 条
[1]   The spectrum of coupled random matrices [J].
Adler, M ;
Van Moerbeke, P .
ANNALS OF MATHEMATICS, 1999, 149 (03) :921-976
[2]  
AGANAGIC M, 2003, ARXIVHEPTH0305132
[3]   Longest increasing subsequences: From patience sorting to the Baik-Deift-Johansson theorem [J].
Aldous, D ;
Diaconis, P .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 36 (04) :413-432
[4]   PLANE PARTITIONS .5. THE TSSCPP CONJECTURE [J].
ANDREWS, GE .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1994, 66 (01) :28-39
[5]  
[Anonymous], 1977, Sov. Math. Dokl.
[6]   On the distribution of the length of the longest increasing subsequence of random permutations [J].
Baik, J ;
Deift, P ;
Johansson, K .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (04) :1119-1178
[7]  
BAIK J, 2001, MATH SCI RES I PUBL, V40, P1, DOI DOI 10.2977/PRIMS/1145475964
[8]   Gromov-Witten invariants in algebraic geometry [J].
Behrend, K .
INVENTIONES MATHEMATICAE, 1997, 127 (03) :601-617
[9]  
BERGERE M, 2009, ARXIV09013273MATHPH
[10]   Determinantal Representation of the Time-Dependent Stationary Correlation Function for the Totally Asymmetric Simple Exclusion Model [J].
Bogoliubov, Nikolay M. .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2009, 5