Random fiber laser based on a partial-reflection random fiber grating for high temperature sensing

被引:29
作者
Deng, Jiancheng [1 ,2 ]
Churkin, D., V [3 ]
Xu, Zuowei [1 ,2 ]
Shu, Xuewen [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelectron, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
[3] Novosibirsk State Univ, Novosibirsk 630090, Russia
基金
中国国家自然科学基金; 俄罗斯科学基金会; 欧盟地平线“2020”;
关键词
19;
D O I
10.1364/OL.419115
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A stable single wavelength random fiber laser (RFL) with a partial-reflection random fiber grating (PR-RFG) for high temperature sensing is proposed and demonstrated for the first time, to the best of our knowledge. The PR-RFG is fabricated with the help of a femtosecond laser, with its highest reflection peak significantly higher than all other reflection peaks, which can ensure the stability of this filter-free RFL. Theoretical calculations also show that such a PR-RFG should be designed with reflectivity in the range of similar to 30%-90% to obtain one reflection peak significantly higher than other peaks. The threshold of this laser is only 6.4 mW. In addition, the RFL realizes temperature sensing in the range from 25 degrees C to 500 degrees C and has an optical signal-to-noise ratio of up to 70 dB. (C) 2021 Optical Society of America
引用
收藏
页码:957 / 960
页数:4
相关论文
共 19 条
[1]   Refractive-index-modified-dot Fabry-Perot fiber probe fabricated by femtosecond laser for high-temperature sensing [J].
Chen, Pengcheng ;
Shu, Xuewen .
OPTICS EXPRESS, 2018, 26 (05) :5292-5299
[2]   Recent advances in fundamentals and applications of random fiber lasers [J].
Churkin, Dmitry V. ;
Sugavanam, Srikanth ;
Vatnik, Ilya D. ;
Wang, Zinan ;
Podivilov, Evgenii V. ;
Babin, Sergey A. ;
Rao, Yunjiang ;
Turitsyn, Sergei K. .
ADVANCES IN OPTICS AND PHOTONICS, 2015, 7 (03) :516-569
[3]   High-Speed and High-Resolution Interrogation of a Strain and Temperature Random Grating Sensor [J].
Deng, Hong ;
Lu, Ping ;
Mihailov, Stephen J. ;
Yao, Jianping .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (23) :5587-5592
[4]   Stable and low threshold random fiber laser via Anderson localization [J].
Deng, Jiancheng ;
Han, Mengmeng ;
Xu, Zuowei ;
Du, Yueqing ;
Shu, Xuewen .
OPTICS EXPRESS, 2019, 27 (09) :12987-12997
[5]   Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping [J].
Jia, Xin-Hong ;
Rao, Yun-Jiang ;
Yuan, Cheng-Xu ;
Li, Jin ;
Yan, Xiao-Dong ;
Wang, Zi-Nan ;
Zhang, Wei-Li ;
Wu, Han ;
Zhu, Ye-Yu ;
Peng, Fei .
OPTICS EXPRESS, 2013, 21 (21) :24611-24619
[6]   Significant increase of Curie temperature in nano-scale BaTiO3 [J].
Li, Yueliang ;
Liao, Zhenyu ;
Fang, Fang ;
Wang, Xiaohui ;
Li, Longtu ;
Zhu, Jing .
APPLIED PHYSICS LETTERS, 2014, 105 (18)
[7]   Single-mode Er-doped fiber random laser with distributed Bragg grating feedback [J].
Lizarraga, N. ;
Puente, N. P. ;
Chaikina, E. I. ;
Leskova, T. A. ;
Mendez, E. R. .
OPTICS EXPRESS, 2009, 17 (02) :395-404
[8]   Low-Loss Random Fiber Gratings Made With an fs-IR Laser for Distributed Fiber Sensing [J].
Lu, Ping ;
Mihailov, Stephen J. ;
Coulas, David ;
Ding, Huimin ;
Bao, Xiaoyi .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2019, 37 (18) :4697-4702
[9]   High-resolution random fiber laser acoustic emission sensor [J].
Miao, Shuaijie ;
Zhang, Wentao ;
Song, Ying ;
Huang, Wenzhu .
OPTICS EXPRESS, 2020, 28 (09) :12699-12708
[10]   Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation [J].
Mihailov, SJ ;
Smelser, CW ;
Lu, P ;
Walker, RB ;
Grobnic, D ;
Ding, HM ;
Henderson, G ;
Unruh, J .
OPTICS LETTERS, 2003, 28 (12) :995-997