GEOMETRIC POLYNOMIALS AND INTEGER PARTITIONS

被引:0
作者
Merca, Mircea [1 ,2 ]
机构
[1] Univ Craiova, Dept Math, Craiova 200585, Romania
[2] Acad Romanian Scientists, Ilfov 3,Sect 5, Bucharest, Romania
关键词
geometric polynomials; geometric numbers; Bernoulli numbers; Genocchi numbers; partitions; NUMBERS; SERIES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that the geometric polynomials can be expressed as sums over integer partitions in two different ways. New formulas involving geometric numbers, Bernoulli numbers, and Genocchi numbers are derived in this context.
引用
收藏
页码:117 / 127
页数:11
相关论文
共 27 条
  • [1] Andrews G. E., 1998, CAMBRIDGE MATH LIB
  • [2] [Anonymous], 2014, INT J MATH ANAL, DOI DOI 10.12988/IJMA.2014.45126
  • [3] [Anonymous], 2012, INTEGERS
  • [4] [Anonymous], 2005, INT J MATH MATH SCI
  • [5] [Anonymous], 2008, ADV APPL DISCRETE MA
  • [6] Barsky D., 1981, S MIN GROUPE ANAL UL, V34, P1
  • [7] Some applications of <bold>S</bold>-restricted set partitions
    Benyi, Beata
    Ramirez, Jose L.
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2019, 78 (01) : 110 - 127
  • [8] Boyadzhiev K. N., 2012, Math. Mag., V85, P252
  • [9] Geometric polynomials: properties and applications to series with zeta values
    Boyadzhiev, Kh. N.
    Dil, A.
    [J]. ANALYSIS MATHEMATICA, 2016, 42 (03) : 203 - 224
  • [10] Some new identities and congruences for Fubini numbers
    Diagana, Toka
    Maiga, Hamadoun
    [J]. JOURNAL OF NUMBER THEORY, 2017, 173 : 547 - 569