Roman {k}-domination in trees and complexity results for some classes of graphs

被引:3
作者
Wang, Cai-Xia [1 ]
Yang, Yu [1 ]
Wang, Hong-Juan [1 ]
Xu, Shou-Jun [1 ]
机构
[1] Lanzhou Univ, Gansu Key Lab Appl Math & Complex Syst, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Roman {k}-domination number; Domination number; Trees; NP-complete; RAINBOW DOMINATION;
D O I
10.1007/s10878-021-00735-z
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we study Roman {k}-dominating functions on a graph G with vertex set V for a positive integer k: a variant of {k}-dominating functions, generations of Roman {2}-dominating functions and the characteristic functions of dominating sets, respectively, which unify classic domination parameters with certain Roman domination parameters on G. Let k >= 1 be an integer, and a function f : V -> {0, 1,..., k} defined on V called a Roman {k}-dominating function if for every vertex v is an element of V with f (v) = 0, Sigma(u is an element of N(v)) f (u) >= k, where N(v) is the open neighborhood of v in G. The minimum value Sigma(u is an element of V) f (u) for a Roman {k}-dominating function f on G is called the Roman {k}-domination number of G, denoted by gamma({Rk})(G). We first present bounds on gamma({Rk}) (G) in terms of other domination parameters, including gamma({Rk})(G) <= k gamma (G). Secondly, we show one of our main results: characterizing the trees achieving equality in the bound mentioned above, which generalizes M.A. Henning and W.F. klostermeyer's results on the Roman {2}-domination number (Henning and Klostermeyer in Discrete Appl Math 217:557-564, 2017). Finally, we show that for every fixed k is an element of Z(+), associated decision problem for the Roman {k}-domination is NP-complete, even for bipartite planar graphs, chordal bipartite graphs and undirected path graphs.
引用
收藏
页码:174 / 186
页数:13
相关论文
共 15 条
  • [1] DOMINATING SETS IN CHORDAL GRAPHS
    BOOTH, KS
    JOHNSON, JH
    [J]. SIAM JOURNAL ON COMPUTING, 1982, 11 (01) : 191 - 199
  • [2] Bresar B, 2008, TAIWAN J MATH, V12, P213
  • [3] Rainbow domination and related problems on strongly chordal graphs
    Chang, Gerard J.
    Li, Bo-Jr
    Wu, Jiaojiao
    [J]. DISCRETE APPLIED MATHEMATICS, 2013, 161 (10-11) : 1395 - 1401
  • [4] Roman {2}-domination
    Chellali, Mustapha
    Haynes, Teresa W.
    Hedetniemi, Stephen T.
    McRae, Alice A.
    [J]. DISCRETE APPLIED MATHEMATICS, 2016, 204 : 22 - 28
  • [5] UNIT DISK GRAPHS
    CLARK, BN
    COLBOURN, CJ
    JOHNSON, DS
    [J]. DISCRETE MATHEMATICS, 1990, 86 (1-3) : 165 - 177
  • [6] Roman domination in graphs
    Cockayne, EJ
    Dreyer, PA
    Hedetniemi, SM
    Hedetniemi, ST
    [J]. DISCRETE MATHEMATICS, 2004, 278 (1-3) : 11 - 22
  • [7] Domke G. S., 1991, GRAPH THEORY COMBINA, V1, P371
  • [8] Haynes T.W., 2013, Fundamentals of Domination in Graphs, DOI DOI 10.1201/9781482246582
  • [9] Henning M., 2002, DISCUSS MATH GRAPH T, V22, P325
  • [10] Italian domination in trees
    Henning, Michael A.
    Klostermeyer, William F.
    [J]. DISCRETE APPLIED MATHEMATICS, 2017, 217 : 557 - 564