Two-dimensional materials for lithium/sodium-ion capacitors

被引:101
作者
Han, Daliang [1 ,2 ]
Zhang, Jun [3 ]
Weng, Zhe [1 ,2 ]
Kong, Debin [4 ]
Tao, Ying [1 ,2 ]
Ding, Fei [5 ]
Ruan, Dianbo [6 ,7 ]
Yang, Quan-Hong [1 ,2 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, State Key Lab Chem Engn, Nanoyang Grp, Tianjin 300350, Peoples R China
[2] Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[3] Tsinghua Univ, TBSI, Shenzhen 518055, Peoples R China
[4] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Nanosyst & Hierarch Fabricat, Beijing 100190, Peoples R China
[5] Tianjin Inst Power Sources, Sci & Technol Power Sources Lab, Tianjin 300384, Peoples R China
[6] Tsinghua Univ, Sch Mat Sci & Engn, Beijing 100084, Peoples R China
[7] Ningbo CRRC New Energy Technol Co Ltd, Ningbo 315112, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Two-dimensional materials; Graphene; Transition metal dichalcogenides; MXenes; Lithium/sodium-ion capacitors; NEGATIVE ELECTRODE MATERIALS; HIGH VOLUMETRIC CAPACITANCE; GRAPHENE-BASED MATERIALS; HYBRID ENERGY-STORAGE; HIGH-POWER; POROUS GRAPHENE; CARBON CATHODE; INTEROVERLAPPED SUPERSTRUCTURE; ELECTROCHEMICAL CAPACITORS; SUPERCAPACITOR ELECTRODES;
D O I
10.1016/j.mtener.2018.10.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-ion capacitors (LICs), constructed with a battery-type electrode and capacitor-type electrode in electrolytes containing a Li-salt, are designed to bridge the gap between lithium-ion batteries (LIBs) and supercapacitors (SCs). Such a configuration gives LICs a high energy density, high power density and long-term cycling stability. Hence, LICs are regarded as one of the most promising alternatives to present electrochemical energy storage (EES) devices. As the most important components of LICs, extensive efforts have been made to develop novel electrode materials during the past two decades. However, some critical issues including a kinetic imbalance between a battery-type electrode and a capacitor-type electrode, unsatisfactory energy and power densities and cycling stability still need to be effectively addressed. Two-dimensional (2D) materials, because of the unique advantages, including a high specific surface area, excellent electrical conductivity, a tunable layered structure, rich electrochemical active sites and mechanical flexibility, have been used as electrode materials and additives for LICs and great progress has been made in recent years. In this review, we summarize the recent progress in the use of 2D materials, including graphene, transition metal dichalcogenides (TMDs) and MXenes, as battery-type electrode materials, capacitor-type electrode materials and additives in LICs. The typical application of 2D materials in sodium-ion capacitors (NICs) is also briefly reviewed. Finally, an outlook for the future researches on achieving higher-performance LICs and NICs is presented. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:30 / 45
页数:16
相关论文
共 150 条
[1]   An asymmetric hybrid nonaqueous energy storage cell [J].
Amatucci, GG ;
Badway, F ;
Du Pasquier, A ;
Zheng, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (08) :A930-A939
[2]   2D metal carbides and nitrides (MXenes) for energy storage [J].
Anasori, Babak ;
Lukatskaya, Maria R. ;
Gogotsi, Yury .
NATURE REVIEWS MATERIALS, 2017, 2 (02)
[3]   Insertion-Type Electrodes for Nonaqueous Li-Ion Capacitors [J].
Aravindan, Vanchiappan ;
Gnanaraj, Joe ;
Lee, Yun-Sung ;
Madhavi, Srinivasan .
CHEMICAL REVIEWS, 2014, 114 (23) :11619-11635
[4]   Nonaqueous Lithium-Ion Capacitors with High Energy Densities using Trigol-Reduced Graphene Oxide Nanosheets as Cathode-Active Material [J].
Aravindan, Vanchiappan ;
Mhamane, Dattakumar ;
Ling, Wong Chui ;
Ogale, Satishchandra ;
Madhavi, Srinivasan .
CHEMSUSCHEM, 2013, 6 (12) :2240-2244
[5]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[6]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[7]   MOF-derived crumpled-sheet-assembled perforated carbon cuboids as highly effective cathode active materials for ultra-high energy density Li-ion hybrid electrochemical capacitors (Li-HECs) [J].
Banerjee, Abhik ;
Upadhyay, Kush Kumar ;
Puthusseri, Dhanya ;
Aravindan, Vanchiappan ;
Madhavi, Srinivasan ;
Ogale, Satishchandra .
NANOSCALE, 2014, 6 (08) :4387-4394
[8]   Capacitance limits of high surface area activated carbons for double layer capacitors [J].
Barbieri, O ;
Hahn, M ;
Herzog, A ;
Kötz, R .
CARBON, 2005, 43 (06) :1303-1310
[9]   Pore Shape Affects Spontaneous Charge Redistribution in Small Pores [J].
Black, Jennifer M. ;
Andreas, Heather A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (27) :12030-12038
[10]   Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage [J].
Bonaccorso, Francesco ;
Colombo, Luigi ;
Yu, Guihua ;
Stoller, Meryl ;
Tozzini, Valentina ;
Ferrari, Andrea C. ;
Ruoff, Rodney S. ;
Pellegrini, Vittorio .
SCIENCE, 2015, 347 (6217)