Theoretical Insight into High-Efficiency Triple-Junction Tandem Solar Cells via the Band Engineering of Antimony Chalcogenides

被引:109
作者
Cao, Yu [1 ,2 ]
Liu, Chaoying [1 ,2 ]
Jiang, Jiahao [1 ,2 ]
Zhu, Xinyun [1 ,2 ]
Zhou, Jing [3 ]
Ni, Jian [4 ]
Zhang, Jianjun [4 ]
Pang, Jinbo [5 ]
Rummeli, Mark H. [6 ,7 ,8 ,9 ,10 ]
Zhou, Weijia [5 ]
Liu, Hong [5 ,11 ]
Cuniberti, Gianaurelio [12 ,13 ,14 ,15 ]
机构
[1] Northeast Elect Power Univ, Minist Educ, Key Lab Modern Power Syst Simulat & Control & Ren, Jilin 132012, Jilin, Peoples R China
[2] Northeast Elect Power Univ, Sch Elect Engn, Jilin 132012, Jilin, Peoples R China
[3] Northeast Elect Power Univ, Sch Chem Engn, Jilin 132012, Jilin, Peoples R China
[4] Nankai Univ, Coll Elect Informat & Opt Engn, Tianjin 300350, Peoples R China
[5] Univ Jinan, Inst Adv Interdisciplinary Res iAIR, Collaborat Innovat Ctr Technol & Equipment Biol D, Univ Shandong, Jinan 250022, Peoples R China
[6] Soochow Univ, Soochow Inst Energy & Mat Innovat, Coll Energy, Suzhou 215006, Peoples R China
[7] Soochow Univ, Key Lab Adv Carbon Mat & Wearable Energy Technol, Suzhou 215006, Peoples R China
[8] Polish Acad Sci, Ctr Polymer & Carbon Mat, M Curie Sklodowskiej 34, PL-41819 Zabrze, Poland
[9] IFW Dresden, Inst Complex Mat, 20 Helmholtz Str, D-01069 Dresden, Germany
[10] VSB Tech Univ Ostrava, Inst Environm Technol, 17 Listopadu 15, Ostrava 70833, Czech Republic
[11] Shandong Univ, State Key Lab Crystal Mat, Ctr Bio & Micro Nano Funct Mat, 27 Shandanan Rd, Jinan 250100, Peoples R China
[12] Tech Univ Dresden, Inst Mat Sci, D-01062 Dresden, Germany
[13] Tech Univ Dresden, Max Bergmann Ctr Biomat, D-01062 Dresden, Germany
[14] Tech Univ Dresden, Ctr Adv Elect Dresden, D-01062 Dresden, Germany
[15] Tech Univ Dresden, Dresden Ctr Computat Mat Sci, D-01062 Dresden, Germany
基金
中国国家自然科学基金; 国家重点研发计划; 美国国家科学基金会;
关键词
antimony chalcogenides; band engineering; quantum efficiencies; thin films; triple-junction tandem solar cells; SB2SE3; FABRICATION; ABSORBER; LAYER; SNO2;
D O I
10.1002/solr.202000800
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Antimony chalcogenides have become a family of promising photoelectric materials for high-efficiency solar cells. To date, single-junction solar cells based on individual antimony selenide or sulfide are dominant and show limited photoelectric conversion efficiency. Therefore, great gaps remain for the multiple junction solar cells. Herein, triple-junction antimony chalcogenides-based solar cells are designed and optimized with a theoretical efficiency of 32.98% through band engineering strategies with Sb2S3/Sb-2(S0.7Se0.3)(3)/Sb2Se3 stacking. The optimum Se content of the mid-cell should be maintained low, i.e., 30% for achieving a low defect density in an absorber layer. Therefore, Sb-2(S0.7Se0.3)(3)-based mid solar cells have contributed to elevate the external quantum efficiency in triple-junction devices by the full utilization of the solar spectrum. In a single-junction solar cell, the bandgap gradient is regulated through the Se content gradient along the depth profile of Sb-2(S1-xSex)(3). Besides, an increasing Se content profile provides an additional built-in electric field for boosting hole charge carrier collection. Thus, the high charge carrier generation rate leads to a 17.96% improvement in the conversion efficiency compared with a conventional cell. This work may pave the way to boost the conversion efficiency of antimony chalcogenides-based solar cells to their theoretical limits.
引用
收藏
页数:12
相关论文
共 75 条
[1]   Influence of the electron buffer layer on the photovoltaic performance of planar Sb2(SxSe1-x)3 solar cells [J].
Andres Jaramillo-Quintero, Oscar ;
Elizabeth Rincon, Marina ;
Vasquez-Garcia, Geovanni ;
Nair, P. K. .
PROGRESS IN PHOTOVOLTAICS, 2018, 26 (09) :709-717
[2]   Tandem organic solar cells revisited [J].
Bahro, Daniel ;
Koppitz, Manuel ;
Colsmann, Alexander .
NATURE PHOTONICS, 2016, 10 (06) :354-355
[3]   BANDGAP ENGINEERING OF AMORPHOUS-SEMICONDUCTORS FOR SOLAR-CELL APPLICATIONS [J].
BERNHARD, N ;
BAUER, GH ;
BLOSS, WH .
PROGRESS IN PHOTOVOLTAICS, 1995, 3 (03) :149-176
[4]   Graded Bandgap CsPbI2+xBr1-x Perovskite Solar Cells with a Stabilized Efficiency of 14.4% [J].
Bian, Hui ;
Bai, Dongliang ;
Jin, Zhiwen ;
Wang, Kang ;
Liang, Lei ;
Wang, Haoran ;
Zhang, Jingru ;
Wang, Qian ;
Liu, Shengzhong .
JOULE, 2018, 2 (08) :1500-1510
[5]   Intrinsic Defect Limit to the Electrical Conductivity and a Two-Step p-Type Doping Strategy for Overcoming the Efficiency Bottleneck of Sb2S3-Based Solar Cells [J].
Cai, Zenghua ;
Dai, Chen-Min ;
Chen, Shiyou .
SOLAR RRL, 2020, 4 (04)
[6]   Rotational design of charge carrier transport layers for optimal antimony trisulfide solar cells and its integration in tandem devices [J].
Cao, Yu ;
Zhu, Xinyun ;
Jiang, Jiahao ;
Liu, Chaoying ;
Zhou, Jing ;
Ni, Jian ;
Zhang, Jianjun ;
Pang, Jinbo .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 206
[7]   Ultrathin microcrystalline hydrogenated Si/Ge alloyed tandem solar cells towards full solar spectrum conversion [J].
Cao, Yu ;
Zhu, Xinyun ;
Tong, Xingyu ;
Zhou, Jing ;
Ni, Jian ;
Zhang, Jianjun ;
Pang, Jinbo .
FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2020, 14 (06) :997-1005
[8]   Towards high efficiency inverted Sb2Se3 thin film solar cells [J].
Cao, Yu ;
Zhu, Xinyun ;
Chen, Hanbo ;
Zhang, Xintong ;
Zhou, Jing ;
Hu, Ziyang ;
Pang, Jinbo .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2019, 200
[9]   Non-uniform distribution in μc-Si1-xGex:H and its influence on thin film and device performance [J].
Cao, Yu ;
Liu, Yiming ;
Zhou, Jing ;
Wang, Yijun ;
Ni, Jian ;
Zhang, Jianjun .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 151 :1-6
[10]   Hydrogenated microcrystalline silicon germanium as bottom sub-cell absorber for triple junction solar cell [J].
Cao, Yu ;
Zhang, Jianjun ;
Li, Chao ;
Li, Tianwei ;
Huang, Zhenhua ;
Ni, Jian ;
Hu, Ziyang ;
Geng, Xinhua ;
Zhao, Ying .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2013, 114 :161-164