All-electrical generation of spin-polarized currents in quantum spin Hall insulators

被引:27
作者
Tao, L. L. [1 ,2 ]
Cheung, K. T. [1 ,2 ]
Zhang, L. [1 ,2 ,3 ,4 ]
Wang, J. [1 ,2 ]
机构
[1] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China
[2] Univ Hong Kong, Ctr Theoret & Computat Phys, Hong Kong, Hong Kong, Peoples R China
[3] Shanxi Univ, Inst Laser Spect, State Key Lab Quantum Opt & Quantum Opt Devi, Taiyuan 030006, Peoples R China
[4] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Peoples R China
基金
中国国家自然科学基金;
关键词
SPINTRONICS; CONDUCTANCE; CHALLENGES; TRANSPORT; GRAPHENE;
D O I
10.1103/PhysRevB.95.121407
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The control and generation of spin-polarized current (SPC) without magnetic materials and an external magnetic field is a big challenge in spintronics and normally requires a spin-flip mechanism. In this Rapid Communication, we show the theoretical discovery of all-electrical generation of SPC without relying on spin-flip spin-orbit coupling (SOC). We find that the SPC can be produced as long as an energy-dependent phase difference between the spin up and down electrons can be established. We verify this through quantum transport calculations on a gated stanene zigzag nanoribbon, which is a quantum spin Hall (QSH) insulator. Our calculations indicate that the transient current as well as ac conductance are significantly spin polarized, which results from the genetic phase difference between spin up and down electrons after traversing the system. Our results are robust against edge imperfections and generally valid for other QSH insulators, such as silicene and germanene, etc. These findings establish a different route for generating SPCs by purely electrical means and open the door for interesting applications of semiconductor spintronics.
引用
收藏
页数:5
相关论文
共 47 条
[1]   Challenges for semiconductor spintronics [J].
Awschalom, David D. ;
Flatte, Michael E. .
NATURE PHYSICS, 2007, 3 (03) :153-159
[2]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[3]   Quantum spin hall effect [J].
Bernevig, BA ;
Zhang, SC .
PHYSICAL REVIEW LETTERS, 2006, 96 (10)
[4]   Complex band structure of topological insulator Bi2Se3 [J].
Betancourt, J. ;
Li, S. ;
Dang, X. ;
Burton, J. D. ;
Tsymbal, E. Y. ;
Velev, J. P. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (39)
[5]  
BUTTIKER M, 1993, PHYS REV LETT, V70, P4114, DOI 10.1103/PhysRevLett.70.4114
[6]   COMPLEX BAND STRUCTURES OF ZINCBLENDE MATERIALS [J].
CHANG, YC .
PHYSICAL REVIEW B, 1982, 25 (02) :605-619
[7]   Fast algorithm for transient current through open quantum systems [J].
Cheung, King Tai ;
Fu, Bin ;
Yu, Zhizhou ;
Wang, Jian .
PHYSICAL REVIEW B, 2017, 95 (12)
[8]   Symmetries of quantum transport with Rashba spin-orbit: graphene spintronics [J].
Chico, Leonor ;
Latge, Andrea ;
Brey, Luis .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (25) :16469-16475
[9]  
Chuang P, 2015, NAT NANOTECHNOL, V10, P35, DOI [10.1038/nnano.2014.296, 10.1038/NNANO.2014.296]
[10]   Conductance quantization at a half-integer plateau in a symmetric GaAs quantum wire [J].
Crook, R. ;
Prance, J. ;
Thomas, K. J. ;
Chorley, S. J. ;
Farrer, I. ;
Ritchie, D. A. ;
Pepper, M. ;
Smith, C. G. .
SCIENCE, 2006, 312 (5778) :1359-1362