THE WARPED PRODUCT MANIFOLD AS A GRADIENT RICCI SOLITON AND RELATION TO ITS COMPONENTS

被引:9
作者
Gunsen, Seckin [1 ]
Onat, Leyla [1 ]
Kaya, Dilek Acikgoz [1 ]
机构
[1] Adnan Menderes Univ, Fac Arts & Sci, Dept Math, TR-09010 Aydin, Turkey
来源
COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES | 2019年 / 72卷 / 08期
关键词
warped product; gradient Ricci soliton; generalized m-quasi-Einstein; conformal vector field; CLASSIFICATION; COMPACT;
D O I
10.7546/CRABS.2019.08.03
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we consider a Riemannian warped product as a gradient Ricci soliton. We conclude that the base is a generalized m-quasi-Einstein manifold and M is isometric to S-n x (f) F-m, R-n x (f) F-m or H-n x (f) F-m when del phi is conformal. We also investigate the potential function of the gradient Ricci soliton M as a lift of a function defined on the fiber F.
引用
收藏
页码:1015 / 1023
页数:9
相关论文
共 22 条
[1]  
[Anonymous], 1988, Contemp Math, DOI DOI 10.1090/CONM/071/954419
[2]  
[Anonymous], 1987, EINSTEIN MANIFOLDS E
[3]   SOME CHARACTERIZATIONS FOR COMPACT ALMOST RICCI SOLITONS [J].
Barros, A. ;
Ribeiro, E., Jr. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (03) :1033-1040
[4]   Characterizations and integral formulae for generalized m-quasi-Einstein metrics [J].
Barros, Abenago ;
Ribeiro, Ernani, Jr. .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2014, 45 (02) :325-341
[5]   MANIFOLDS OF NEGATIVE CURVATURE [J].
BISHOP, RL ;
ONEILL, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 145 :1-&
[6]   Geometry of Ricci solitons [J].
Cao, Huai-Dong .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2006, 27 (02) :121-142
[7]  
Cao HD, 2010, J DIFFER GEOM, V85, P175
[8]   Rigidity of quasi-Einstein metrics [J].
Case, Jeffrey ;
Shu, Yu-Jen ;
Wei, Guofang .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 (01) :93-100
[9]   THE NONEXISTENCE OF QUASI-EINSTEIN METRICS [J].
Case, Jeffrey S. .
PACIFIC JOURNAL OF MATHEMATICS, 2010, 248 (02) :277-284
[10]   Generalized quasi-Einstein manifolds with harmonic Weyl tensor [J].
Catino, Giovanni .
MATHEMATISCHE ZEITSCHRIFT, 2012, 271 (3-4) :751-756