Numerical modeling and experimental investigation on the effect of low-salinity water flooding for enhanced oil recovery in carbonate reservoirs

被引:2
|
作者
Hosseini, Erfan [1 ]
Sarmadivaleh, Mohammad [2 ]
Mohammadnazar, Dana [3 ]
机构
[1] Sarvak Azar Engn & Dev SAED Co, Oil Ind Engn & Construct OIEC Grp, Dept Petr Engn, Tehran, Iran
[2] Curtin Univ, Dept Petr Engn, Perth, WA, Australia
[3] Islamic Azad Univ, Dept Polymer Chem, Shahreza, Iran
关键词
Smart water injection; Oil recovery factor; Interfacial tension (IFT); Total dissolved solids (TDS); Wettability; Core flooding; WETTABILITY; IMPACT;
D O I
10.1007/s13202-020-01071-4
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Numerous studies concluded that water injection with modified ionic content/salinity in sandstones would enhance the oil recovery factor due to some mechanisms. However, the effects of smart water on carbonated formations are still indeterminate due to a lack of experimental investigations and researches. This study investigates the effects of low-salinity (Low Sal) solutions and its ionic content on interfacial tension (IFT) reduction in one of the southwestern Iranian carbonated reservoirs. A set of organized tests are designed and performed to find each ion's effects and total dissolved solids (TDS) on the candidate carbonated reservoir. A sequence of wettability and IFT ( at reservoir temperature) tests are performed to observe the effects of controlling ions (sulfate, magnesium, calcium, and sodium) and different salinities on the main mechanisms (i. e., wettability alteration and IFT reduction). All IFT tests are performed at reservoir temperature (198 degrees F) to minimize the difference between reservoir and laboratory-observed alterations. In this paper, the effects of four different ions -(SO42-, -Ca2+, -Mg2+, -Na+) and total salinity TDS (40,000, 20,000, 5000 ppm) are investigated. From all obtained results, the best two conditions are applied in core flooding tests to obtain the relative permeability alterations using unsteady-state methods and Cydarex software. The final part is the simulation of the whole process using the Schlumberger Eclipse black oil simulator (E100, Ver. 2010) on the candidate reservoir sector. To conclude, at Low Sal ( i.e., 5000 ppm), the sulfate ion increases sulfate concentration lower IFT, while in higher salinities, increasing sulfate ion increases IFT. Also, increasing calcium concentration at high TDS (i.e., 40,000 ppm) decreases the amount of wettability alteration. In comparison, in lower TDS values (20,000 and 5000 ppm), calcium shows a positive effect, and its concentration enhanced the alteration process. Using Low Sal solutions at water cut equal or below 10% lowers recovery rate during simulations while lowering the ultimate recovery of less than 5%.
引用
收藏
页码:925 / 947
页数:23
相关论文
共 50 条
  • [21] Applying low-salinity water to alter wettability in carbonate oil reservoirs: an experimental study
    Hosseini, Erfan
    Chen, Zhongwei
    Sarmadivaleh, Mohammad
    Mohammadnazar, Dana
    JOURNAL OF PETROLEUM EXPLORATION AND PRODUCTION TECHNOLOGY, 2021, 11 (01) : 451 - 475
  • [22] Investigation of Low-Salinity Waterflooding in Secondary and Tertiary Enhanced Oil Recovery in Limestone Reservoirs
    Gandomkar, Asghar
    Rahimpour, Mohammad Reza
    ENERGY & FUELS, 2015, 29 (12) : 7781 - 7792
  • [23] Coupling of Low-Salinity Water Flooding and Steam Flooding for Sandstone Unconventional Oil Reservoirs
    Al-Saedi, Hasan N.
    Flori, Ralph E.
    Alkhamis, Mohammed
    Brady, Patrick V.
    NATURAL RESOURCES RESEARCH, 2019, 28 (01) : 213 - 221
  • [24] Coupling of Low-Salinity Water Flooding and Steam Flooding for Sandstone Unconventional Oil Reservoirs
    Hasan N. Al-Saedi
    Ralph E. Flori
    Mohammed Alkhamis
    Patrick V. Brady
    Natural Resources Research, 2019, 28 : 213 - 221
  • [25] Chemical osmosis as a cause for the improved oil recovery by low-salinity water flooding: Experimental and numerical approaches for detection
    Takeda, Mikio
    Manaka, Mitsuo
    Tuji, Takashi
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2021, 207
  • [26] Foam flooding in porous media for low-salinity enhanced oil recovery
    Tantihet, Kanyarat
    Charoensaeng, Ampira
    Shiau, Bor
    Suriyapraphadilok, Uthaiporn
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [27] Modelling Low-Salinity Water Flooding as a Tertiary Oil Recovery Technique
    Olabode, Oluwasanmi
    Alaigba, David
    Oramabo, Daniel
    Bamigboye, Oreofeoluwa
    MODELLING AND SIMULATION IN ENGINEERING, 2020, 2020
  • [28] LOW-SALINITY WATER FLOODING: EVALUATING THE EFFECT OF SALINITY ON OIL ANDWATER RELATIVE PERMEABILITY, WETTABILITY, AND OIL RECOVERY
    Shaddel, Sina
    Tabatabae-Nejad, S. Alireza
    Fathi, S. Jafar
    SPECIAL TOPICS & REVIEWS IN POROUS MEDIA-AN INTERNATIONAL JOURNAL, 2014, 5 (02) : 133 - 143
  • [29] Influence of Formation Water Salinity/Composition on the Low-Salinity Enhanced Oil Recovery Effect in High-Temperature Sandstone Reservoirs
    Aghaeifar, Zahra
    Strand, Skule
    Austad, Tor
    Puntervold, Tina
    Aksulu, Hakan
    Navratil, Kine
    Storas, Silje
    Hamso, Dagny
    ENERGY & FUELS, 2015, 29 (08) : 4747 - 4754
  • [30] Experimental Investigation about Oil Recovery by Using Low-Salinity Nanofluids Solutions in Sandstone Reservoirs
    Liu, Nannan
    Yagmyrov, Shanazar
    Qi, Hengchen
    Sun, Lin
    APPLIED SCIENCES-BASEL, 2024, 14 (01):