A High-Quality Preconditioning Technique for Multi-Length-Scale Symmetric Positive Definite Linear Systems

被引:6
作者
Yamazaki, Ichitaro [1 ]
Bai, Zhaojun [1 ]
Chen, Wenbin [2 ]
Scalettar, Richard [3 ]
机构
[1] Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USA
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
关键词
Preconditioning; multi-length-scale; incomplete Cholesky factorization; quantum Monte Carlo simulation; FACTORIZATION PRECONDITIONER; MATRICES;
D O I
10.4208/nmtma.2009.m9008s
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study preconditioning techniques used in conjunction with the conjugate gradient method for solving multi-length-scale symmetric positive definite linear systems originating from the quantum Monte Carlo simulation of electron interaction of correlated materials. Existing preconditioning techniques are not designed to be adaptive to varying numerical properties of the multi-length-scale systems. In this paper, we propose a hybrid incomplete Cholesky (HIC) preconditioner and demonstrate its adaptivity to the multi-length-scale systems. In addition, we propose an extension of the compressed sparse column with row access (CSCR) sparse matrix storage format to efficiently accommodate the data access pattern to compute the HIC preconditioner. We show that for moderately correlated materials, the HIC preconditioner achieves the optimal linear scaling of the simulation. The development of a linear-scaling preconditioner for strongly correlated materials remains an open topic.
引用
收藏
页码:469 / 484
页数:16
相关论文
共 20 条
[1]  
AJIZ M, 1984, INT J NUMER METH ENG, P949
[2]  
BAI Z, 2007, CSE200736 U CAL DEP
[3]  
Bai Z., 2007, PROC 4 INT C CHINESE, P253
[4]  
BALAY S, 2002, ANL9511
[6]   A robust preconditioner with low memory requirements for large sparse least squares problems [J].
Benzi, M ;
Tuma, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (02) :499-512
[7]   A robust incomplete factorization preconditioner for positive definite matrices [J].
Benzi, M ;
Tuma, M .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2003, 10 (5-6) :385-400
[8]   SURVEY OF SPARSE-MATRIX RESEARCH [J].
DUFF, IS .
PROCEEDINGS OF THE IEEE, 1977, 65 (04) :500-535
[9]  
EIJKHOUT V, 1999, 145 LAPACK U TENN CO
[10]  
JENNINGS A, 1977, J I MATH APPL, V20, P307