Target Tracking on Sensing Surface with Electrical Impedance Tomography

被引:0
作者
Huuhtanen, Timo [1 ]
Lankinen, Antti [2 ]
Jung, Alexander [1 ]
机构
[1] Aalto Univ, Dept Comp Sci, Espoo, Finland
[2] Imperial Coll, Dept Bioengn, London, England
来源
28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020) | 2021年
关键词
Electrical impedance tomography; hidden Markov models; sensing surface;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
An emerging class of applications uses sensing surfaces, where sensor data is collected from a 2-dimensional surface covering a large spatial area. Sensing surface applications range from observing human activity to detecting failures of construction materials. Electrical impedance tomography (EIT) is an imaging technology, which has been successfully applied to imaging in several important application domains such as medicine, geophysics, and process industry. EIT is a low-cost technology offering high temporal resolution, which makes it a potential technology sensing surfaces. In this paper, we evaluate the applicability of EIT algorithms for tracking a small moving object on a 2D sensing surface. We compare standard EIT algorithms for this purpose and develop a method which models the movement of a small target on a sensing surface using hidden Markov models (HMM). Existing EIT methods are geared towards high image quality instead of smooth target trajectories, which makes them suboptimal for target tracking. Numerical experiments indicate that our proposed method outperforms existing EIT methods in target tracking accuracy.
引用
收藏
页码:1817 / 1821
页数:5
相关论文
共 18 条
[1]   Temporal image reconstruction in electrical impedance tomography [J].
Adler, Andy ;
Dai, Tao ;
Lionheart, William R. B. .
PHYSIOLOGICAL MEASUREMENT, 2007, 28 (07) :S1-S11
[2]   Particle Markov chain Monte Carlo methods [J].
Andrieu, Christophe ;
Doucet, Arnaud ;
Holenstein, Roman .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 :269-342
[3]  
Bar-Shalom Y., 1995, MULTITARGET MULTISEN
[4]  
Borsic A., 2007, 92 U MANCH SCH MATH
[5]   Smart-surface: Large scale textile pressure sensors arrays for activity recognition [J].
Cheng, Jingyuan ;
Sundholm, Mathias ;
Zhou, Bo ;
Hirsch, Marco ;
Lukowicz, Paul .
PERVASIVE AND MOBILE COMPUTING, 2016, 30 :97-112
[6]   A comparison framework for temporal image reconstructions in electrical impedance tomography [J].
Gagnon, Herve ;
Grychtol, Bartlomiej ;
Adler, Andy .
PHYSIOLOGICAL MEASUREMENT, 2015, 36 (06) :1093-1107
[7]   Electrical impedance tomography-based sensing skin for quantitative imaging of damage in concrete [J].
Hallaji, Milad ;
Seppanen, Aku ;
Pour-Ghaz, Mohammad .
SMART MATERIALS AND STRUCTURES, 2014, 23 (08)
[8]   Tactile sensor without wire and sensing element in the tactile region based on EIT method [J].
Kato, Yo ;
Mukai, Toshiharu ;
Hayakawa, Tomonori ;
Shibata, Tetsuyoshi .
2007 IEEE SENSORS, VOLS 1-3, 2007, :792-795
[9]   Image reconstruction in time-varying electrical impedance tomography based on the extended Kalman filter [J].
Kim, KY ;
Kim, BS ;
Kim, MC ;
Lee, YJ ;
Vauhkonen, M .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2001, 12 (08) :1032-1039
[10]   A non-iterative method for the electrical impedance tomography based on joint sparse recovery [J].
Lee, Ok Kyun ;
Kang, Hyeonbae ;
Ye, Jong Chul ;
Lim, Mikyoung .
INVERSE PROBLEMS, 2015, 31 (07)