Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera

被引:178
|
作者
Huang, Albert S. [1 ]
Bachrach, Abraham [1 ]
Henry, Peter [2 ]
Krainin, Michael [2 ]
Maturana, Daniel [3 ]
Fox, Dieter [2 ]
Roy, Nicholas [1 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA
[3] Pontificia Univ Catolica Chile, Dept Comp Sci, Santiago, Chile
来源
ROBOTICS RESEARCH, ISRR | 2017年 / 100卷
关键词
HELICOPTER;
D O I
10.1007/978-3-319-29363-9_14
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
RGB-D cameras provide both a color image and per-pixel depth estimates. The richness of their data and the recent development of low-cost sensors have combined to present an attractive opportunity for mobile robotics research. In this paper, we describe a system for visual odometry and mapping using an RGB-D camera, and its application to autonomous flight. By leveraging results from recent state-of-the-art algorithms and hardware, our system enables 3D flight in cluttered environments using only onboard sensor data. All computation and sensing required for local position control are performed onboard the vehicle, reducing the dependence on unreliable wireless links. We evaluate the effectiveness of our system for stabilizing and controlling a quadrotor micro air vehicle, demonstrate its use for constructing detailed 3D maps of an indoor environment, and discuss its limitations.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] 3D Visual SLAM using RGB-D Camera
    Krerngkamjornkit, Rapee
    Simic, Milan
    SMART DIGITAL FUTURES 2014, 2014, 262 : 533 - 544
  • [42] 3-D Mapping With an RGB-D Camera
    Endres, Felix
    Hess, Juergen
    Sturm, Juergen
    Cremers, Daniel
    Burgard, Wolfram
    IEEE TRANSACTIONS ON ROBOTICS, 2014, 30 (01) : 177 - 187
  • [43] Dominant Plane Detection using a RGB-D Camera for Autonomous Navigation
    Wang, Jiefei
    Garratt, Matthew
    Anavatti, Sreenatha
    PROCEEDINGS OF THE 2015 6TH INTERNATIONAL CONFERENCE ON AUTOMATION, ROBOTICS AND APPLICATIONS (ICARA), 2015, : 456 - 460
  • [44] Robust RGB-D Visual Odometry Based on Planar Features
    Chen, Baifan
    Liu, Chunfa
    Tong, Yu
    Wu, Qian
    2017 IEEE 7TH ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (CYBER), 2017, : 449 - 453
  • [45] Bi-direction Direct RGB-D Visual Odometry
    Cai, Jiyuan
    Luo, Lingkun
    Hu, Shiqiang
    APPLIED ARTIFICIAL INTELLIGENCE, 2020, 34 (14) : 1137 - 1158
  • [46] A RGB-D visual odometry method based on line features
    Huang P.
    Cao Z.
    Huang J.
    1600, Editorial Department of Journal of Chinese Inertial Technology (29): : 340 - 349
  • [47] Direct RGB-D Visual Odometry Based on Hybrid Strategy
    Cai, Jiyuan
    Luo, Lingkun
    Yu, Qiuyu
    Liu, Bing
    Hu, Shiqiang
    IEEE SENSORS JOURNAL, 2021, 21 (20) : 23278 - 23288
  • [48] Robust RGB-D visual odometry based on edges and points
    Yao, Erliang
    Zhang, Hexin
    Xu, Hui
    Song, Haitao
    Zhang, Guoliang
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2018, 107 : 209 - 220
  • [49] DUI-VIO: Depth Uncertainty Incorporated Visual Inertial Odometry based on an RGB-D Camera
    Zhang, He
    Ye, Cang
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 5002 - 5008
  • [50] Simultaneous localization and mapping of mobile robot using a RGB-D camera
    Lin, Junqin
    Han, Baoling
    Ge, Zhuo
    Liang, Guanhao
    Zhao, Jiahang
    OPTOELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY IV, 2016, 10020