An approach to measure the densities of solids using an artificial neural network

被引:1
|
作者
Neelamegam, P.
Rajendran, A. [1 ]
机构
[1] Nehru Mem Coll Autonomous, PG & Res Dept Appl Phys, Tiruchirappalli, Tamil Nadu, India
[2] Deemed Univ, SASTRA, Dept Elect & Instrumentat Engn, Thanjavur, Tamil Nadu, India
关键词
density measurement; temperature measurement; microcontroller; neural network; back propagation algorithm;
D O I
10.1080/10739140601126452
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A dedicated microcontroller based density measurement system is developed to measure densities of solids. A data acquisition system is designed and fabricated using a PIC16F877 microcontroller. To measure the weight and temperature of the sample, strain gauge and thermocouple sensors are used. A three layer neural network is used to train the data for atomic number, temperature, and density of sample using a back propagation algorithm. After training the neural network, it is used to compute the density at various temperatures.
引用
收藏
页码:189 / 199
页数:11
相关论文
共 50 条
  • [31] Artificial Neural Network Approach for Overlay Design of Flexible Pavements
    Abo-Hashema, Mostafa
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2009, 6 (02) : 204 - 212
  • [32] An Evolutionary Artificial Neural Network Approach for Breast Cancer Diagnosis
    Liu, Lijuan
    Deng, Mingrong
    THIRD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING: WKDD 2010, PROCEEDINGS, 2010, : 593 - 596
  • [33] Prediction of calcium concentration in human blood serum using an artificial neural network
    Neelamegam, P.
    Jamaludeen, A.
    Rajendran, A.
    MEASUREMENT, 2011, 44 (02) : 312 - 319
  • [34] Classification of breast lesions using artificial neural network
    Mashor, M. Y.
    Esugasini, S.
    Isa, N. A. Mat
    Othman, N. H.
    3RD KUALA LUMPUR INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING 2006, 2007, 15 : 45 - +
  • [35] Sensor calibration and compensation using artificial neural network
    Khan, SA
    Shahani, DT
    Agarwala, AK
    ISA TRANSACTIONS, 2003, 42 (03) : 337 - 352
  • [36] Prediction of Egg Production Using Artificial Neural Network
    Ghazanfari, S.
    Nobari, K.
    Tahmoorespur, M.
    IRANIAN JOURNAL OF APPLIED ANIMAL SCIENCE, 2011, 1 (01): : 11 - 16
  • [37] The evaluation of grinding process using artificial neural network
    Umucu, Yakup
    Deniz, Vedat
    Bozkurt, Volkan
    Caglar, M. Fatih
    INTERNATIONAL JOURNAL OF MINERAL PROCESSING, 2016, 146 : 46 - 53
  • [38] Detecting a faulty feeder by using an artificial neural network
    Jelenc, Bogomil
    Pihler, Joze
    ELEKTROTEHNISKI VESTNIK-ELECTROCHEMICAL REVIEW, 2016, 83 (1-2): : 13 - 20
  • [39] Pattern Recognition Using Artificial Neural Network: A Review
    Kim, Tai-hoon
    INFORMATION SECURITY AND ASSURANCE, 2010, 76 : 138 - 148
  • [40] Evaluation of Groundwater Quality Using Artificial Neural Network
    Zhu, Changjun
    Xie, Hehai
    Huang, Xiakun
    2008 IEEE INTERNATIONAL SYMPOSIUM ON KNOWLEDGE ACQUISITION AND MODELING WORKSHOP PROCEEDINGS, VOLS 1 AND 2, 2008, : 158 - +