Critical Binder cumulant in a two-dimensional anisotropic Ising model with competing interactions

被引:37
作者
Selke, W. [1 ]
Shchur, L. N. [2 ,3 ]
机构
[1] Rhein Westfal TH Aachen, Inst Theoret Phys, JARA SIM, D-52056 Aachen, Germany
[2] LD Landau Theoret Phys Inst, Chernogolovka 142432, Russia
[3] Moscow Univ Phys & Technol MFTI, Dolgoprudnyi, Russia
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 04期
基金
俄罗斯基础研究基金会;
关键词
ferromagnetic-antiferromagnetic transitions; Ising model; SPIN CORRELATIONS; CRITICAL-BEHAVIOR; PHASE-DIAGRAM; MONTE-CARLO; ANNNI MODEL; LATTICE; ONSET;
D O I
10.1103/PhysRevE.80.042104
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Binder cumulant at the phase transition of Ising models on square lattices with ferromagnetic couplings between nearest neighbors and with competing antiferromagnetic couplings between next-nearest neighbors, along only one diagonal, is determined using Monte Carlo techniques. In the phase diagram a disorder line occurs separating regions with monotonically decaying and with oscillatory spin-spin correlations. Findings on the variation of the critical cumulant with the ratio of the two interaction strengths are compared to related recent results based on renormalization-group calculations.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] On Ising Model with Four Competing Interactions on Cayley Tree
    Ganikhodjaev, N. N.
    Rozikov, U. A.
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2009, 12 (02) : 141 - 156
  • [32] Short-time critical dynamics of damage spreading in the two-dimensional Ising model
    Rubio Puzzo, M. Leticia
    Albano, Ezequiel V.
    PHYSICAL REVIEW E, 2010, 81 (05):
  • [33] Residual entropy of a two-dimensional Ising model with crossing and four-spin interactions
    Li, De-Zhang
    Zhao, Yu-Jun
    Yao, Yao
    Yang, Xiao-Bao
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (04)
  • [34] Critical properties of the antiferromagnetic layered Ising model on a cubic lattice with competing interactions
    Murtazaev, A. K.
    Ramazanov, M. K.
    PHYSICS OF THE SOLID STATE, 2017, 59 (09) : 1822 - 1828
  • [35] Two-dimensional Ising model on random lattices with constant coordination number
    Schrauth, Manuel
    Richter, Julian A. J.
    Portela, Jefferson S. E.
    PHYSICAL REVIEW E, 2018, 97 (02)
  • [36] On the Singularities in the Susceptibility Expansion for the Two-Dimensional Ising Model
    Craig A. Tracy
    Harold Widom
    Journal of Statistical Physics, 2014, 156 : 1125 - 1135
  • [37] Two-dimensional Ising model with Einstein site phonons
    Pili, L.
    Grigera, S. A.
    PHYSICAL REVIEW B, 2019, 99 (14)
  • [38] On the Singularities in the Susceptibility Expansion for the Two-Dimensional Ising Model
    Tracy, Craig A.
    Widom, Harold
    JOURNAL OF STATISTICAL PHYSICS, 2014, 156 (06) : 1125 - 1135
  • [39] Tightness of the Ising–Kac Model on the Two-Dimensional Torus
    Martin Hairer
    Massimo Iberti
    Journal of Statistical Physics, 2018, 171 : 632 - 655
  • [40] Improved parallel implementation of the two-dimensional Ising model
    Knoll, P
    Mirzaei, S
    COMPUTER PHYSICS COMMUNICATIONS, 2001, 141 (03) : 313 - 321