Critical Binder cumulant in a two-dimensional anisotropic Ising model with competing interactions

被引:37
|
作者
Selke, W. [1 ]
Shchur, L. N. [2 ,3 ]
机构
[1] Rhein Westfal TH Aachen, Inst Theoret Phys, JARA SIM, D-52056 Aachen, Germany
[2] LD Landau Theoret Phys Inst, Chernogolovka 142432, Russia
[3] Moscow Univ Phys & Technol MFTI, Dolgoprudnyi, Russia
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 04期
基金
俄罗斯基础研究基金会;
关键词
ferromagnetic-antiferromagnetic transitions; Ising model; SPIN CORRELATIONS; CRITICAL-BEHAVIOR; PHASE-DIAGRAM; MONTE-CARLO; ANNNI MODEL; LATTICE; ONSET;
D O I
10.1103/PhysRevE.80.042104
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Binder cumulant at the phase transition of Ising models on square lattices with ferromagnetic couplings between nearest neighbors and with competing antiferromagnetic couplings between next-nearest neighbors, along only one diagonal, is determined using Monte Carlo techniques. In the phase diagram a disorder line occurs separating regions with monotonically decaying and with oscillatory spin-spin correlations. Findings on the variation of the critical cumulant with the ratio of the two interaction strengths are compared to related recent results based on renormalization-group calculations.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] REENTRANT PHASE-TRANSITIONS IN THE TWO-DIMENSIONAL ISING-MODEL WITH COMPETING NEAREST NEIGHBOR INTERACTIONS
    KITATANI, H
    MIYASHITA, S
    SUZUKI, M
    PHYSICS LETTERS A, 1985, 108 (01) : 45 - 49
  • [32] Two-dimensional Ising model with competing interactions: Phase diagram and low-temperature remanent disorder
    O'Hare, A.
    Kusmartsev, F. V.
    Kugel, K. I.
    PHYSICAL REVIEW B, 2009, 79 (01):
  • [33] Spreading of damage in a two-dimensional Ising model with dipolar interactions
    Gleiser, PM
    Tamarit, FA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (35): : 6073 - 6080
  • [34] Metastable states in a two-dimensional Ising model with dipolar interactions
    Gleiser, PM
    Tamarit, FA
    Cannas, SA
    PHYSICA D-NONLINEAR PHENOMENA, 2002, 168 : 73 - 79
  • [35] Critical region for droplet formation in the two-dimensional Ising model
    Biskup, M
    Chayes, L
    Kotecky, R
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 242 (1-2) : 137 - 183
  • [36] CRITICAL SINGULARITIES OF THE RANDOM TWO-DIMENSIONAL ISING-MODEL
    JUG, G
    PHYSICAL REVIEW B, 1983, 27 (07): : 4518 - 4521
  • [37] Quantum critical dynamics in the two-dimensional transverse Ising model
    Hotta, Chisa
    Yoshida, Tempei
    Harada, Kenji
    PHYSICAL REVIEW RESEARCH, 2023, 5 (01):
  • [38] Nonequilibrium critical dynamics of the two-dimensional ±J Ising model
    Agrawal, Ramgopal
    Cugliandolo, Leticia F.
    Faoro, Lara
    Ioffe, Lev B.
    Picco, Marco
    PHYSICAL REVIEW E, 2023, 108 (06)
  • [39] Critical Region for Droplet Formation in the Two-Dimensional Ising Model
    Marek Biskup
    Lincoln Chayes
    Roman Kotecký
    Communications in Mathematical Physics, 2003, 242 : 137 - 183
  • [40] Two-dimensional Ising model and local nonuniversality of critical exponents
    Bariev, RZ
    BRAZILIAN JOURNAL OF PHYSICS, 2000, 30 (04) : 680 - 681