Critical Binder cumulant in a two-dimensional anisotropic Ising model with competing interactions

被引:37
|
作者
Selke, W. [1 ]
Shchur, L. N. [2 ,3 ]
机构
[1] Rhein Westfal TH Aachen, Inst Theoret Phys, JARA SIM, D-52056 Aachen, Germany
[2] LD Landau Theoret Phys Inst, Chernogolovka 142432, Russia
[3] Moscow Univ Phys & Technol MFTI, Dolgoprudnyi, Russia
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 04期
基金
俄罗斯基础研究基金会;
关键词
ferromagnetic-antiferromagnetic transitions; Ising model; SPIN CORRELATIONS; CRITICAL-BEHAVIOR; PHASE-DIAGRAM; MONTE-CARLO; ANNNI MODEL; LATTICE; ONSET;
D O I
10.1103/PhysRevE.80.042104
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Binder cumulant at the phase transition of Ising models on square lattices with ferromagnetic couplings between nearest neighbors and with competing antiferromagnetic couplings between next-nearest neighbors, along only one diagonal, is determined using Monte Carlo techniques. In the phase diagram a disorder line occurs separating regions with monotonically decaying and with oscillatory spin-spin correlations. Findings on the variation of the critical cumulant with the ratio of the two interaction strengths are compared to related recent results based on renormalization-group calculations.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] TWO-DIMENSIONAL ISING-MODEL WITH COMPETING INTERACTIONS - FLOATING PHASE, WALLS AND DISLOCATIONS
    VILLAIN, J
    BAK, P
    JOURNAL DE PHYSIQUE, 1981, 42 (05): : 657 - 668
  • [22] Higher-order-magnetization-cumulant universality of the two-dimensional ising model
    Mon, KK
    PHYSICAL REVIEW B, 1997, 55 (01) : 38 - 40
  • [23] Critical properties of a two-dimensional Ising magnet with quasiperiodic interactions
    Alves, G. A.
    Vasconcelos, M. S.
    Alves, T. F. A.
    PHYSICAL REVIEW E, 2016, 93 (04)
  • [24] TWO-DIMENSIONAL ISING-MODEL WITH MULTISPIN INTERACTIONS
    DEBIERRE, JM
    TURBAN, L
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (15): : 3571 - 3584
  • [25] Critical behaviors of Ising model on a two-dimensional quasilattice
    Wen, Zhangbin
    Ma, Jiahong
    Fu, Xiujun
    SOLID STATE COMMUNICATIONS, 2008, 146 (7-8) : 304 - 306
  • [26] Critical behavior of the two-dimensional Ising model with a slit
    Wu, Xintian
    PHYSICAL REVIEW E, 2017, 95 (05)
  • [27] The critical equation of state of the two-dimensional Ising model
    Caselle, M
    Hasenbusch, M
    Pelissetto, A
    Vicari, E
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (14): : 2923 - 2948
  • [28] Aging in a two-dimensional Ising model with dipolar interactions
    Toloza, JH
    Tamarit, FA
    Cannas, SA
    PHYSICAL REVIEW B, 1998, 58 (14): : R8885 - R8888
  • [29] Anisotropic scaling of the two-dimensional Ising model I: the torus
    Hobrecht, Hendrik
    Hucht, Alfred
    SCIPOST PHYSICS, 2019, 7 (03):
  • [30] SITE-DILUTED TWO-DIMENSIONAL ISING-MODELS WITH COMPETING INTERACTIONS
    VELGAKIS, MJ
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1989, 159 (02) : 167 - 170