Reepithelialization in focus: Non-invasive monitoring of epidermal wound healing in vitro

被引:23
作者
Kiesewetter, Lisa [1 ,2 ]
Littau, Laura [1 ]
Walles, Heike [1 ,3 ]
Boccaccini, Aldo R. [4 ]
Groeber-Becker, Florian [1 ]
机构
[1] Fraunhofer Inst Silicate Res ISC, Translat Ctr Regenerat Therapies TLZ RT, Neunerpl 2, D-97082 Wurzburg, Germany
[2] Univ Hosp Wurzburg, Dept Tissue Engn & Regenerat Med TERM, D-97070 Wurzburg, Germany
[3] Otto von Guericke Univ, Core Facil Tissue Engn, Bldg 28,Pfalzerstr 2, D-39106 Magdeburg, Germany
[4] Univ Erlangen Nurnberg, Dept Mat Sci & Engn, Inst Biomat, Cauerstr 6, D-91058 Erlangen, Germany
关键词
Impedance spectroscopy; Reconstructed human epidermis; Epidermal wound healing; Reepithelialization; Transepithelial electrical resistance; IMPEDANCE SPECTROSCOPY; SKIN; REEPITHILIALIZATION; MODEL; ONSET;
D O I
10.1016/j.bios.2019.111555
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Up to today, in vivo studies are the gold standard for testing of new therapeutics for cutaneous wound healing. Alternative in vitro studies are mostly limited to two-dimensional cell cultures and thus only poorly reflect the complex physiological wound situation. Here we present a new three-dimensional wound model based on a reconstructed human epidermis (RHE). We introduce impedance spectroscopy as a time-resolved test method to determine the efficacy of wound healing non-destructively by focusing on the barrier function of the RHE as a main feature of intact skin. We assessed the skin barrier quantitatively and qualitatively by calculating the transepithelial electrical resistance (TEER), by fitting an equivalent circuit and by analyzing the single characteristic frequency. Upon wounding using a 2 mm biopsy punch, the impedance dropped significantly to 3.5% of the initial value. Impedance spectroscopy thereby proved to be a sensitive tool to distinguish between wounds of different sizes. The glucose and lactate concentration in the medium revealed an acute stress reaction of the wounded RHE (wRHE) in the first days after wounding. During monitoring of reepithelialization over fourteen days, the barrier fully recovered. Microscopy and histology images correlate well with these findings, revealing an active wound closure mostly completed by day seven after wounding. These wounded epidermal models can now be applied in therapeutic screenings and with the help of rapid screening by impedance spectroscopy, expensive and time-consuming imaging and histological methods as well as the use of animal models can be reduced.
引用
收藏
页数:9
相关论文
共 50 条
[41]   A Sensor System for Automatic Detection of Food Intake Through Non-Invasive Monitoring of Chewing [J].
Sazonov, Edward S. ;
Fontana, Juan M. .
IEEE SENSORS JOURNAL, 2012, 12 (05) :1340-1348
[42]   Non-invasive lab test in the monitoring of vadose zone contaminated by light non-aqueous phase liquid [J].
Alesse, Beatrice ;
Orlando, Luciana ;
Palladini, Lucia .
GEOPHYSICAL PROSPECTING, 2019, 67 (08) :2161-2175
[43]   Transcriptional profile of in vitro expanded human epidermal progenitor cells for the treatment of non-healing wounds [J].
Langa, Paulina ;
Wardowska, Anna ;
Zielinski, Jacek ;
Podolak-Popinigis, Justyna ;
Sass, Piotr ;
Sosnowski, Pawel ;
Kondej, Karolina ;
Renkielska, Alicja ;
Sachadyn, Pawel ;
Trzonkowski, Piotr ;
Pikula, Michal .
JOURNAL OF DERMATOLOGICAL SCIENCE, 2018, 89 (03) :272-281
[44]   Simple non-invasive analysis of embryonic stem cell-derived cardiomyocytes beating in vitro [J].
Radaszkiewicz, Katarzyna Anna ;
Sykorova, Dominika ;
Karas, Pavel ;
Kudova, Jana ;
Kohut, Lukas ;
Bino, Lucia ;
Vecera, Josef ;
Vitecek, Jan ;
Kubala, Lukas ;
Pachernik, Jiri .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (02)
[45]   In situ monitoring of barrier function on-chip via automated, non-invasive luminescence sensing [J].
Schellberg, Bryan G. ;
Koppes, Abigail N. ;
Koppes, Ryan A. .
LAB ON A CHIP, 2025,
[46]   Non-invasive in vitro NAM for the detection of reversible and irreversible eye damage after chemical exposure for GHS classification purposes (ImAi) [J].
Knetzger, Nicola ;
Ertych, Norman ;
Burgdorf, Tanja ;
Beranek, Joelle ;
Oelgeschlaeger, Michael ;
Waechter, Jana ;
Horchler, Annika ;
Gier, Stefanie ;
Windbergs, Maike ;
Fayyaz, Susann ;
Grimm, Fabian A. ;
Wiora, Georg ;
Lotz, Christian .
ARCHIVES OF TOXICOLOGY, 2025, 99 (03) :1011-1028
[47]   Non-invasive glucose monitoring in patients with Type 1 diabetes: A Multisensor system combining sensors for dielectric and optical characterisation of skin [J].
Caduff, Andreas ;
Talary, Mark S. ;
Mueller, Martin ;
Dewarrat, Francois ;
Klisic, Jelena ;
Donath, Marc ;
Heinemann, Lutz ;
Stahel, Werner A. .
BIOSENSORS & BIOELECTRONICS, 2009, 24 (09) :2778-2784
[48]   Integrated non-invasive biochemical and biophysical sensing systems for health and performance monitoring: A systems perspective [J].
Yokus, Murat A. ;
Daniele, Michael A. .
BIOSENSORS & BIOELECTRONICS, 2021, 184
[49]   Non-invasive evaluation of skin cytokines secretion: An innovative complementary method for monitoring skin disorders [J].
Portugal-Cohen, Meital ;
Kohen, Ron .
METHODS, 2013, 61 (01) :63-68
[50]   Undirected singing rate as a non-invasive tool for welfare monitoring in isolated male zebra finches [J].
Yamahachi, Homare ;
Zai, Anja T. ;
Tachibana, Ryosuke O. ;
Stepien, Anna E. ;
Rodrigues, Diana, I ;
Cave-Lopez, Sophie ;
Lorenz, Corinna ;
Arneodo, Ezequiel M. ;
Giret, Nicolas ;
Hahnloser, Richard H. R. .
PLOS ONE, 2020, 15 (08)