Research and Application of a Novel Hybrid Model Based on a Deep Neural Network Combined with Fuzzy Time Series for Energy Forecasting

被引:22
作者
Wei, Danxiang [1 ]
Wang, Jianzhou [1 ]
Ni, Kailai [1 ]
Tang, Guangyu [1 ]
机构
[1] Dongbei Univ Finance & Econ, Sch Stat, Dalian 116025, Peoples R China
基金
中国国家自然科学基金;
关键词
multi-objective grey wolf optimizer; long short-term memory; fuzzy time series; LEM2; combination forecasting; wind speed; electrical power load; SUPPORT VECTOR MACHINES; WIND-SPEED; MULTIOBJECTIVE OPTIMIZATION; FEATURE-SELECTION; SYSTEM; ALGORITHM; STRATEGY; ARCHITECTURE; WAVELET;
D O I
10.3390/en12183588
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In recent years, although deep learning algorithms have been widely applied to various fields, ranging from translation to time series forecasting, researchers paid limited attention to modelling parameter optimization and the combination of the fuzzy time series. In this paper, a novel hybrid forecasting system, named CFML (complementary ensemble empirical mode decomposition (CEEMD)-fuzzy time series (FTS)-multi-objective grey wolf optimizer (MOGWO)-long short-term memory (LSTM)), is proposed and tested. This model is based on the LSTM model with parameters optimized by MOGWO, before which a fuzzy time series method involving the LEM2 (learning from examples module version two) algorithm is adopted to generate the final input data of the optimized LSTM model. In addition, the CEEMD algorithm is also used to de-noise and decompose the raw data. The CFML model successfully overcomes the nonstationary and irregular features of wind speed data and electrical power load series. Several experimental results covering four wind speed datasets and two electrical power load datasets indicate that our hybrid forecasting system achieves average improvements of 49% and 70% in wind speed and electrical power load, respectively, under the metric MAPE (mean absolute percentage error).
引用
收藏
页数:38
相关论文
共 50 条
  • [41] Hybrid forecasting model based on long short term memory network and deep learning neural network for wind signal
    Qin, Yong
    Li, Kun
    Liang, Zhanhao
    Lee, Brendan
    Zhang, Fuyong
    Gu, Yongcheng
    Zhang, Lei
    Wu, Fengzhi
    Rodriguez, Dragan
    APPLIED ENERGY, 2019, 236 : 262 - 272
  • [42] A Novel Fuzzy Time Series Forecasting Model by Similarity Measurement and Fuzzy Inference
    Cheng, Yi-Chung
    Chen, Chih-Chuan
    Li, Sheng-Tun
    INTERNATIONAL WORK-CONFERENCE ON TIME SERIES (ITISE 2014), 2014, : 675 - 686
  • [43] An effective neural network and fuzzy time series-based hybridized model to handle forecasting problems of two factors
    Singh, Pritpal
    Borah, Bhogeswar
    KNOWLEDGE AND INFORMATION SYSTEMS, 2014, 38 (03) : 669 - 690
  • [44] AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
    Khashei, M.
    Bijari, M.
    Hejazi, S. R.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2011, 8 (03): : 45 - 66
  • [45] Novel wind speed forecasting model based on a deep learning combined strategy in urban energy systems
    Hao, Yan
    Yang, Wendong
    Yin, Kedong
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 219
  • [46] Research time series of meteorological observations as features for wind speed forecasting in a neural network
    Kobzarenko, Dmitry N.
    Kamilova, Ayshat M.
    MARINE INTELLECTUAL TECHNOLOGIES, 2022, (04): : 170 - 176
  • [47] Wind Power Forecasting Based on Time Series and Neural Network
    Li, Lingling
    Wang, Minghui
    Zhu, Fenfen
    Wang, Chengshan
    PROCEEDINGS OF INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE AND COMPUTATIONAL TECHNOLOGY (ISCSCT 2009), 2009, : 293 - 297
  • [48] A hybrid fuzzy time series model based on ANFIS and integrated nonlinear feature selection method for forecasting stock
    Su, Chung-Ho
    Cheng, Ching-Hsue
    NEUROCOMPUTING, 2016, 205 : 264 - 273
  • [49] Adaptive hybrid fuzzy time series forecasting technique based on particle swarm optimization
    Goyal, Gunjan
    Bisht, Dinesh C. S.
    GRANULAR COMPUTING, 2023, 8 (02) : 373 - 390
  • [50] A Novel Stochastic Fuzzy Time Series Forecasting Model Based on a New Partition Method
    Alyousifi, Yousif
    Othman, Mahmod
    Almohammedi, Akram A.
    IEEE ACCESS, 2021, 9 : 80236 - 80252