Inverse spectral reconstruction problem for the convolution operator perturbed by a one-dimensional operator

被引:11
作者
Buterin, S. A. [1 ]
机构
[1] NG Chernyshevskii Saratov State Univ, Saratov, Russia
基金
俄罗斯基础研究基金会;
关键词
inverse spectral reconstruction problem; convolution operator; nonlinear integral equation; Fredholm alternative; Hilbert-Schmidt operator;
D O I
10.1007/s11006-006-0184-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a one-dimensional perturbation of the convolution operator. We study the inverse reconstruction problem for the convolution component using the characteristic numbers under the assumption that the perturbation summand is known a priori. The problem is reduced to the solution of the so-called basic nonlinear integral equation with singularity. We prove the global solvability of this nonlinear equation. On the basis of these results, we prove a uniqueness theorem and obtain necessary and sufficient conditions for the soh.-ability of the inverse problem.
引用
收藏
页码:631 / 644
页数:14
相关论文
共 8 条
[1]  
DUNFORD N, 1962, LINEAR OPERATORS GEN
[2]  
Hardy G.H., 1952, INEQUALITIES
[3]  
KHROMOV AP, 1974, MAT ZAMETKI, V16, P669
[4]  
KHROMOV AP, 1987, THEORY FUNCTIONS APP, P90
[5]  
Yoshida K., 1967, FUNCTIONAL ANAL
[6]  
Yurko V., 2002, INVERSE ILL POSED PR
[7]  
Yurko V. A., 1985, MAT ZAMETKI, V37, P690
[8]  
YURKO VA, 2001, INVERSE SPECTRAL PRO