PFEM formalism in Kronecker notation

被引:26
作者
Zhang, YM [1 ]
Wen, BC [1 ]
Chen, SH [1 ]
机构
[1] JILIN UNIV TECHNOL, DEPT MECH, CHANGCHUN 130025, PEOPLES R CHINA
关键词
D O I
10.1177/108128659600100406
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper extends the probabilistic finite element method (PFEM) to vector-valued and matrix-valued functions using techniques from matrix calculus and Kronecker algebra; and presents the PFEM in Kronecker notation for linear and nonlinear continua. The results derived are easily amenable to computational procedures.
引用
收藏
页码:445 / 461
页数:17
相关论文
共 13 条
[1]  
Ang AS., 1975, PROBABILITY CONCEPTS
[2]  
Benaroya H., 1988, Apply Mesh Rev, V41, P201
[3]   KRONECKER PRODUCTS AND MATRIX CALCULUS IN SYSTEM THEORY [J].
BREWER, JW .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1978, 25 (09) :772-781
[4]   THE STOCHASTIC FINITE-ELEMENT METHOD [J].
CONTRERAS, H .
COMPUTERS & STRUCTURES, 1980, 12 (03) :341-348
[5]  
Liu W.K., 1987, PROBABILIST ENG MECH, V2, P201
[6]   APPLICATIONS OF PROBABILISTIC FINITE-ELEMENT METHODS IN ELASTIC PLASTIC DYNAMICS [J].
LIU, WK ;
BELYTSCHKO, T ;
MANI, A .
JOURNAL OF ENGINEERING FOR INDUSTRY-TRANSACTIONS OF THE ASME, 1987, 109 (01) :2-8
[7]   VARIATIONAL APPROACH TO PROBABILISTIC FINITE-ELEMENTS [J].
LIU, WK ;
BESTERFIELD, GH ;
BELYTSCHKO, T .
JOURNAL OF ENGINEERING MECHANICS-ASCE, 1988, 114 (12) :2115-2133
[8]   TRANSIENT PROBABILISTIC SYSTEMS [J].
LIU, WK ;
BESTERFIELD, G ;
BELYTSCHKO, T .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1988, 67 (01) :27-54
[9]   PROBABILISTIC FINITE-ELEMENTS FOR NONLINEAR STRUCTURAL DYNAMICS [J].
LIU, WK ;
BELYTSCHKO, T ;
MANI, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1986, 56 (01) :61-81
[10]   RANDOM FIELD FINITE-ELEMENTS [J].
LIU, WK ;
BELYTSCHKO, T ;
MANI, A .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1986, 23 (10) :1831-1845