Relaxation of multiple integrals below the growth exponent

被引:74
作者
Fonseca, I [1 ]
Maly, J [1 ]
机构
[1] CHARLES UNIV,KMA,FAC MATH & PHYS,PRAGUE 18600 8,CZECH REPUBLIC
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 1997年 / 14卷 / 03期
基金
美国国家科学基金会;
关键词
quasiconvexity; relaxation;
D O I
10.1016/S0294-1449(97)80139-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The integral representation of the relaxed energies (Fq,p)(u, Omega) := inf({un}){ lim inf(n -->infinity) integral(Omega) F(x, u(n), del u(n)) dx :u(n) is an element of W-1,W-q(Omega,R-d), u(n) --> u weakly in W-1,W-p(Omega, R-d)}, (F)(q,p)(loc)(u, Omega) := inf({un}){lim inf(n-->infinity) integral(Omega) F(x,u(n),del u(n))dx : u(n) is an element of W-loc(1,q)(Omega, R-d), u(n) --> weakly in W-1,W-p(Omega, R-d)} of a functional E : u bar right arrow integral(Omega) F(x,u,del u) dx, u is an element of W-1,W-q(Omega, R-d), where 0 less than or equal to F(x,zeta,xi) less than or equal to C(1 + \zeta\(r) + \xi\(q)) and max{1,rN-1/N+r,qN-1/N} < p less than or equal to q, is studied. In particular, W-1,W-p-sequentail weak lower semicontinuity of E(.) is obtained in the case where F = F(xi) is a quaiconvex function and p > q(N-1)/N.
引用
收藏
页码:309 / 338
页数:30
相关论文
共 22 条
[1]   SEMICONTINUITY PROBLEMS IN THE CALCULUS OF VARIATIONS [J].
ACERBI, E ;
FUSCO, N .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1984, 86 (02) :125-145
[2]  
ACERBI E, 1993, NEW LOWER SEMICONT M, V52
[3]  
BALL JM, 1984, J FUNCT ANAL, V58, P225, DOI 10.1016/0022-1236(84)90041-7
[4]  
BALL JM, 1977, ARCH RATION MECH AN, V63, P337, DOI 10.1007/BF00279992
[5]  
Carbone L., 1990, RICHERCHE MAT, V39, P99
[6]  
CELADA P, IN PRESS ANN I H POI
[7]  
DALMASO G, 1993, WEAK LOWER SEMICONTI, V45
[8]  
DARCOROGNA B, 1990, C R ACAD SCI PARIS 1, V311, P393
[9]  
DARCOROGNA B, 1989, APPL MATH SCI, V78
[10]  
FONSECA I, UNPUB CLASS RELAXATI