Energetic stable discretization for non-isothermal electrokinetics model

被引:2
作者
Wu, Simo [1 ]
Liu, Chun [2 ]
Zikatanov, Ludmil [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] IIT, Dept Appl Math, Chicago, IL 60616 USA
关键词
PNP (Poisson-Nernst-Planck); Non-isothermal; Finite element; Energy stable; Math-biology;
D O I
10.1016/j.jcp.2020.109889
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose an edge averaged finite element (EAFE) discretization to solve the Heat-PNP (Poisson-Nernst-Planck) equations approximately. Our method enforces positivity of the computed charged density functions and temperature function. Also the thermodynamic consistent discrete energy estimate which resembles the thermodynamic second law of the Heat-PNP system is prescribed. Numerical examples are provided. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:17
相关论文
共 33 条
  • [1] [Anonymous], 2002, The finite element method for elliptic problems, DOI DOI 10.1137/1.9780898719208
  • [2] [Anonymous], 2007, MATH THEORY FINITE E
  • [3] NEWTON SOLVERS FOR DRIFT-DIFFUSION AND ELECTROKINETIC EQUATIONS
    Bousquet, Arthur
    Hu, Xiaozhe
    Metti, Maximilian S.
    Xu, Jinchao
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (03) : B982 - B1006
  • [4] A Navier-Stokes-Fourier system for incompressible fluids with temperature dependent material coefficients
    Bulicek, Miroslav
    Feireisl, Eduard
    Maleka, Josef
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (02) : 992 - 1015
  • [5] Ion channels gated by heat
    Cesare, P
    Moriondo, A
    Vellani, V
    McNaughton, PA
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (14) : 7658 - 7663
  • [6] Poisson-Nernst-Planck systems for ion channels with permanent charges
    Eisenberg, Bob
    Liu, Weishi
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 38 (06) : 1932 - 1966
  • [7] ON A NON-ISOTHERMAL DIFFUSE INTERFACE MODEL FOR TWO-PHASE FLOWS OF INCOMPRESSIBLE FLUIDS
    Eleuteri, Michela
    Rocca, Elisabetta
    Schimperna, Giulio
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (06) : 2497 - 2522
  • [8] Evans L.C., 2010, Partial Differential Equations, DOI DOI 10.1112/BLMS/20.4.375
  • [9] Mathematical theory of compressible, viscous, and heat conducting fluids
    Feireisl, Eduard
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 53 (3-4) : 461 - 490
  • [10] A conservative finite difference scheme for Poisson-Nernst-Planck equations
    Flavell, Allen
    Machen, Michael
    Eisenberg, Bob
    Kabre, Julienne
    Liu, Chun
    Li, Xiaofan
    [J]. JOURNAL OF COMPUTATIONAL ELECTRONICS, 2014, 13 (01) : 235 - 249