Diamond Window Technology for Electron Cyclotron Heating and Current Drive: State of the Art

被引:19
作者
Aiello, Gaetano [1 ]
Scherer, Theo [1 ]
Avramidis, Konstantinos [2 ]
Casal, Natalia [3 ]
Franke, Thomas [4 ,5 ]
Gagliardi, Mario [6 ]
Gantenbein, Gerd [2 ]
Henderson, Mark [3 ]
Jelonnek, John [2 ]
Meier, Andreas [1 ]
Saibene, Gabriella [6 ]
Schreck, Sabine [1 ]
Strauss, Dirk [1 ]
Thumm, Manfred [2 ]
Minh Quang Tran [7 ]
Wild, Christoph [8 ]
Woerner, Eckhard [8 ]
机构
[1] Karlsruhe Inst Technol, Inst Appl Mat, D-76344 Eggenstein Leopoldshafen, Germany
[2] Karlsruhe Inst Technol, Inst Pulsed Power & Microwave Technol, D-76344 Eggenstein Leopoldshafe, Germany
[3] ITER Org, F-13067 St Paul Les Durance, France
[4] EUROfus Consortium, D-85748 Garching, Germany
[5] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
[6] F4E Joint Undertaking, Barcelona 08019, Spain
[7] Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland
[8] Diamond Mat GmbH, D-79108 Freiburg, Germany
关键词
Electron cyclotron system; diamond window; Brewster window; loss tangent; FEM analyses;
D O I
10.1080/15361055.2019.1643690
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Nuclear fusion power plants require electron cyclotron (EC) heating and current drive (H&CD) systems for plasma heating and stabilization. High-power microwave beams between 1 and 2?MW generated by gyrotrons propagate in a dedicated waveguide transmission system to reach the plasma at specific locations. Key components in this transmission system are the chemical vapor deposition diamond windows on both the torus and gyrotron sides of the reactor as they allow transmission of high-power beams while acting as confinement and/or vacuum boundaries. Diamond windows consist of a polycrystalline diamond disk integrated in a metallic housing. In the conventional configuration, there is one disk perpendicular to the beam propagation direction. A steering mechanism is then used to deploy the fixed frequency beam at different locations in the plasma. This is, for instance, the configuration used in the ITER EC H&CD system. Movable parts close to the plasma will be problematic for the lifetime of launchers in future fusion reactors like the DEMOnstration nuclear fusion reactor (DEMO) because of the higher heat loads and neutron fluxes. Therefore, one of the alternative concepts is to deploy the beams directly at the desired resonant magnetic flux surface by frequency tuning gyrotrons. In this case, diamond windows able to work in a given frequency range, like the diamond Brewster-angle window, are required. It is an elegant and compact broadband window solution with the disk inclined at the Brewster angle with respect to the beam direction. This paper shows the development and the current state of different diamond window concepts including the design, the numerical analyses, and application of standard construction nuclear codes and of a specific qualification program.
引用
收藏
页码:719 / 729
页数:11
相关论文
共 13 条
[1]   Design evolution of the diamond window unit for the ITER EC H&CD upper launcher [J].
Aiello, G. ;
Casal, N. ;
Gagliardi, M. ;
Goodman, T. ;
Henderson, M. ;
Meier, A. ;
Saibene, G. ;
Scherer, T. ;
Schreck, S. ;
Strauss, D. .
FUSION ENGINEERING AND DESIGN, 2019, 146 :392-397
[2]  
AIELLO G., 2017, P 42 INT C INFR MILL
[3]   ITER Torus Diamond Window Unit: FEM Analyses and Impact on the Design [J].
Aiello, Gaetano ;
Gagliardi, Mario ;
Meier, Andreas ;
Saibene, Gabriella ;
Scherer, Theo Andreas ;
Schreck, Sabine ;
Spaeh, Peter ;
Strauss, Dirk ;
Vaccaro, Alessandro .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2019, 47 (07) :3289-3297
[4]   Heating Effects in Overmoded Corrugated Waveguide for ITER [J].
Anderson, J. P. ;
Doane, J. L. ;
Grunloh, H. L. ;
Callis, R. W. ;
Ikeda, R. ;
Oda, Y. ;
Takahashi, K. ;
Sakamoto, K. .
JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2016, 37 (01) :55-71
[5]   First Operation of a Step-Frequency Tunable 1-MW Gyrotron With a Diamond Brewster Angle Output Window [J].
Gantenbein, Gerd ;
Samartsev, Andrey ;
Aiello, Gaetano ;
Dammertz, Guenter ;
Jelonnek, John ;
Losert, Markus ;
Schlaich, Andreas ;
Scherer, Theo Andreas ;
Strauss, Dirk ;
Thumm, Manfred ;
Wagner, Dietmar .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (06) :1806-1811
[6]  
Harris DC, 1992, INFRARED WINDOW DOME
[7]   Overview of the ITER EC H&CD system and its capabilities [J].
Omori, T. ;
Henderson, M. A. ;
Albajar, F. ;
Alberti, S. ;
Baruah, U. ;
Bigelow, T. S. ;
Beckett, B. ;
Bertizzolo, R. ;
Bonicelli, T. ;
Bruschi, A. ;
Caughman, J. B. ;
Chavan, R. ;
Cirant, S. ;
Collazos, A. ;
Cox, D. ;
Darbos, C. ;
de Baar, M. R. ;
Denisov, G. ;
Farina, D. ;
Gandini, F. ;
Gassmann, T. ;
Goodman, T. P. ;
Heidinger, R. ;
Hogge, J. P. ;
Illy, S. ;
Jean, O. ;
Jin, J. ;
Kajiwara, K. ;
Kasparek, W. ;
Kasugai, A. ;
Kern, S. ;
Kobayashi, N. ;
Kumric, H. ;
Landis, J. D. ;
Moro, A. ;
Nazare, C. ;
Oda, Y. ;
Pagonakis, I. ;
Piosczyk, B. ;
Platania, P. ;
Plaum, B. ;
Poli, E. ;
Porte, L. ;
Purohit, D. ;
Ramponi, G. ;
Rao, S. L. ;
Rasmussen, D. A. ;
Ronden, D. M. S. ;
Rzesnicki, T. ;
Saibene, G. .
FUSION ENGINEERING AND DESIGN, 2011, 86 (6-8) :951-954
[8]   On the requirements to control neoclassical tearing modes in burning plasmas [J].
Sauter, O. ;
Henderson, M. A. ;
Ramponi, G. ;
Zohm, H. ;
Zucca, C. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2010, 52 (02)
[9]   Pressure tests supporting the qualification of the ITER EC H&CD upper launcher diamond window [J].
Schreck, S. ;
Aiello, G. ;
Casal, N. ;
Gracia, V. ;
Henderson, M. ;
Meier, A. ;
Saibene, G. ;
Scherer, T. ;
Strauss, D. ;
Wouters, P. .
FUSION ENGINEERING AND DESIGN, 2019, 146 :14-18
[10]   ITER ECRH Upper Launcher: Test plan for qualification of the Diamond Torus Window Prototype III [J].
Schreck, Sabine ;
Aiello, Gaetano ;
Meier, Andreas ;
Strauss, Dirk ;
Gagliardi, Mario ;
Saibene, Gabriella ;
Scherer, Theo .
FUSION ENGINEERING AND DESIGN, 2016, 109 :1232-1236