A note on simultaneous Diophantine approximation on planar curves

被引:21
作者
Beresnevich, Victor V.
Velani, Sanju L. [1 ]
机构
[1] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
[2] Byelarussian Acad Sci, Inst Math, Minsk 220072, BELARUS
关键词
Primary 11J83; Secondary 11J13; Secondary 11K60;
D O I
10.1007/s00208-006-0055-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Sn(psi(1),...,.psi(n)) denote the set of simultaneously (psi(1),...,psi(n))approximable points in R-n and S-n*(psi) denote the set of multiplicatively.- approximable points in R-n. Let M be amanifold in R-n. The aim is to develop a metric theory for the sets M boolean AND S-n(psi(1),...,psi(n)) and M boolean AND S-n*(psi) analogous to the classical theory in which M is simply R-n. In this note, we mainly restrict our attention to the case that M is a planar curve C. A complete Hausdorff dimension theory is established for the sets C boolean AND S-2(psi(1),psi(2)) and C n S-2* (psi). A divergent Khintchine type result is obtained for C n S-2(psi(1),psi(2)); i. e. if a certain sum diverges then the one- dimensional Lebesgue measure on C of C boolean AND S-2(psi(1),psi(2)) is full. Furthermore, in the case that C is a rational quadric the convergent Khintchine type result is obtained for both types of approximation. Our results for C boolean AND S2(psi(1),psi(2)) naturally generalize the dimension and Lebesgue measure statements of Beresnevich et al. ( Mem AMS, 179 ( 846), 1 - 91 ( 2006)). Moreover, within the multiplicative framework, our results for C boolean AND S-2* (psi) constitute the first of their type.
引用
收藏
页码:769 / 796
页数:28
相关论文
共 17 条
[1]  
[Anonymous], 1979, METRIC THEORY DIOPHA
[3]  
Beresnevich V, 2006, MEM AM MATH SOC, V179, P1
[4]  
BERESNEVICH V, IN PRESS ANN MATH
[5]  
BERESNEVICH V, IN PRESS INT MATH RE
[6]  
Bernik V.I., 1999, Cambridge Tracts in Mathematics, V137
[7]  
BERNIK VI, 2001, IMRN, V9, P453
[8]  
Bovey J. D., 1978, Bull. London Math. Soc., V10, P213
[9]  
Dickinson H, 2000, DUKE MATH J, V101, P271
[10]   Diophantine approximation on rational quadrics [J].
Drutu, C .
MATHEMATISCHE ANNALEN, 2005, 333 (02) :405-469