Invariant tori for nearly integrable Hamiltonian systems with degeneracy

被引:128
作者
Xu, JX [1 ]
You, JG [1 ]
Qiu, QJ [1 ]
机构
[1] NANJING UNIV,DEPT MATH,NANJING 210008,PEOPLES R CHINA
关键词
Hamiltonian System; Invariant Torus; Integrable Hamiltonian System;
D O I
10.1007/PL00004344
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:375 / 387
页数:13
相关论文
共 50 条
[31]   Persistence of hyperbolic tori in Hamiltonian systems [J].
Li, Y ;
Yi, YF .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 208 (02) :344-387
[32]   Conservation of Hyperbolic Tori in Hamiltonian Systems [J].
Medvedev, A. G. .
MATHEMATICAL NOTES, 2014, 95 (1-2) :206-211
[33]   On Elliptic Lower-Dimensional Invariant Tori with Prescribed Frequencies in Hamiltonian Systems with Small Parameters [J].
Zou, Hanru ;
Xu, Junxiang .
REGULAR & CHAOTIC DYNAMICS, 2024, 29 (04) :583-604
[34]   Random perturbations of invariant Lagrangian tori of Hamiltonian vector fields [J].
de Monvel, AB ;
Dobrokhotov, SY .
MATHEMATICAL NOTES, 1998, 64 (5-6) :674-679
[35]   Random perturbations of invariant Lagrangian tori of Hamiltonian vector fields [J].
A. Boutet de Monvel ;
S. Yu. Dobrokhotov .
Mathematical Notes, 1998, 64 :674-679
[36]   Exponentially Small Splitting of Separatrices for Whiskered Tori in Hamiltonian Systems [J].
A. Delshams ;
P. Gutierrez .
Journal of Mathematical Sciences, 2005, 128 (2) :2726-2746
[37]   Liouville classification of integrable Hamiltonian systems on surfaces of revolution [J].
Kantonistova E.O. .
Moscow University Mathematics Bulletin, 2015, 70 (5) :220-222
[38]   PERSISTENCE OF DEGENERATE HYPERBOLIC LOWER-DIMENSIONAL INVARIANT TORI IN HAMILTONIAN SYSTEMS WITH BRUNO'S CONDITIONS [J].
Yang, Xiaomei ;
Xu, Junxiang .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (06) :2435-2447
[39]   Global properties of integrable Hamiltonian systems [J].
Lukina, O. V. ;
Takens, F. ;
Broer, H. W. .
REGULAR & CHAOTIC DYNAMICS, 2008, 13 (06) :602-644
[40]   Global properties of integrable Hamiltonian systems [J].
O. V. Lukina ;
F. Takens ;
H. W. Broer .
Regular and Chaotic Dynamics, 2008, 13 :602-644