Dynamical multiple regression in function spaces, under kernel regressors, with ARH(1) errors

被引:1
作者
Ruiz-Medina, M. D. [1 ]
Miranda, D. [1 ]
Espejo, R. M. [1 ]
机构
[1] OR Univ Granada, Dept Stat, Campus Fuente Nueva S-N, Granada 18071, Spain
关键词
ARH(1) errors; Dynamical functional multiple regression; Firm leverage maps; Generalized least-squared estimator; Kernel regressors; TIME-SERIES; PREDICTION; CONVERGENCE; ESTIMATORS;
D O I
10.1007/s11749-018-0614-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A linear multiple regression model in function spaces is formulated, under temporal correlated errors. This formulation involves kernel regressors. A generalized least-squared regression parameter estimator is derived. Its asymptotic normality and strong consistency is obtained, under suitable conditions. The correlation analysis is based on a componentwise estimator of the residual autocorrelation operator. When the dependence structure of the functional error term is unknown, a plug-in generalized least-squared regression parameter estimator is formulated. Its strong consistency is proved as well. A simulation study is undertaken to illustrate the performance of the presented approach, under different regularity conditions. An application to financial panel data is also considered.
引用
收藏
页码:943 / 968
页数:26
相关论文
共 40 条
[1]   Nonparametric time series prediction:: A semi-functional partial linear modeling [J].
Aneiros-Perez, German ;
Vieu, Philippe .
JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (05) :834-857
[2]   Semi-functional partial linear regression [J].
Aneiros-Perez, German ;
Vieu, Philippe .
STATISTICS & PROBABILITY LETTERS, 2006, 76 (11) :1102-1110
[3]  
[Anonymous], 2012, Inference for functional data with applications
[4]  
[Anonymous], 2004, Applied longitudinal analysis
[5]   Regression models with correlated errors based on functional random design [J].
Benhenni, Karim ;
Hedli-Griche, Sonia ;
Rachdi, Mustapha .
TEST, 2017, 26 (01) :1-21
[6]  
Bosq D., 2000, Linear processes in function spaces: theory and applications
[7]   Bayesian estimation in a high dimensional parameter framework [J].
Bosq, Denis ;
Ruiz-Medina, Maria D. .
ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 :1604-1640
[8]   Prediction in functional linear regression [J].
Cai, T. Tony ;
Hall, Peter .
ANNALS OF STATISTICS, 2006, 34 (05) :2159-2179
[9]   Rate of uniform consistency for a class of mode regression on functional stationary ergodic data [J].
Chaouch, Mohamed ;
Laib, Naamane ;
Louani, Djamal .
STATISTICAL METHODS AND APPLICATIONS, 2017, 26 (01) :19-47
[10]  
Chiou JM, 2004, STAT SINICA, V14, P675