Anderson localization for one-frequency quasi-periodic block Jacobi operators

被引:7
作者
Klein, Silvius [1 ]
机构
[1] Pontificia Univ Catolica Rio de Janeiro PUC Rio, Dept Matemat, Rio De Janeiro, Brazil
关键词
Anderson localization; Discrete quasi-periodic operators; Schrodinger and Jacobi operators;
D O I
10.1016/j.jfa.2017.04.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a one-frequency, quasi-periodic, block Jacobi operator, whose blocks are generic matrix-valued analytic functions. We establish Anderson localization for this type of operator under the assumption that the coupling constant is large enough but independent of the frequency. This generalizes a result of J. Bourgain and S. Jitomirskaya on localization for band lattice, quasi-periodic Schrodinger operators. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1140 / 1164
页数:25
相关论文
共 12 条
[1]  
Aigner M., 2014, Proofs from THE BOOK, DOI [10.1007/978-3-662-44205-0, DOI 10.1007/978-3-662-44205-0]
[2]  
Aigner M., 2007, Graduate Texts in Mathematics, V238
[3]  
[Anonymous], 2005, ANN MATH STUD
[4]   Absolutely continuous spectrum for 1D quasiperiodic operators [J].
Bourgain, J ;
Jitomirskaya, S .
INVENTIONES MATHEMATICAE, 2002, 148 (03) :453-463
[5]   On nonperturbative localization with quasi-periodic potential [J].
Bourgain, J ;
Goldstein, M .
ANNALS OF MATHEMATICS, 2000, 152 (03) :835-879
[6]  
Bourgain J., 2000, Lect. Notes Math, V1745, P67
[7]  
Duarte P., 2016, Atlantis Studies in Dynamical Systems, V3
[8]   Positive Lyapunov Exponents for Higher Dimensional Quasiperiodic Cocycles [J].
Duarte, Pedro ;
Klein, Silvius .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 332 (01) :189-219
[9]  
Duarte Pedro, 2017, J EUR MATH IN PRESS
[10]  
Duren P.L., 1970, Pure and Applied Mathematics, V38, P74