Non-abelian Gauge-Invariant Cellular Automata

被引:2
作者
Arrighi, Pablo [1 ,2 ]
Di Molfetta, Giuseppe [1 ,3 ,4 ]
Eon, Nathanael [1 ,5 ]
机构
[1] Aix Marseille Univ, Univ Toulon, LIS, CNRS, Marseille, France
[2] IXXI, Lyon, France
[3] Univ Valencia, CSIC, Dept Fis Teor, Dr Moliner 50, Burjassot 46100, Spain
[4] Univ Valencia, CSIC, IFIC, Dr Moliner 50, Burjassot 46100, Spain
[5] Ecole Cent, Marseille, France
来源
THEORY AND PRACTICE OF NATURAL COMPUTING, TPNC 2019 | 2019年 / 11934卷
关键词
Cellular automata; Gauge-invariance; Quantum information;
D O I
10.1007/978-3-030-34500-6_15
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Gauge-invariance is a mathematical concept that has profound implications in Physics-as it provides the justification of the fundamental interactions. It was recently adapted to the Cellular Automaton (CA) framework, in a restricted case. In this paper, this treatment is generalized to non-abelian gauge-invariance, including the notions of gauge-equivalent theories and gauge-invariants of configurations.
引用
收藏
页码:211 / 221
页数:11
相关论文
共 11 条
[1]   Quantum walks and non-Abelian discrete gauge theory [J].
Arnault, Pablo ;
Di Molfetta, Giuseppe ;
Brachet, Marc ;
Debbasch, Fabrice .
PHYSICAL REVIEW A, 2016, 94 (01)
[2]  
Arrighi P, 2019, ARXIV190307007
[3]   A Gauge-Invariant Reversible Cellular Automaton [J].
Arrighi, Pablo ;
Di Molfetta, Giuseppe ;
Eon, Nathanael .
CELLULAR AUTOMATA AND DISCRETE COMPLEX SYSTEMS, AUTOMATA 2018, 2018, 10875 :1-12
[4]   Fault-tolerant quantum computation by anyons [J].
Kitaev, AY .
ANNALS OF PHYSICS, 2003, 303 (01) :2-30
[5]   Non-Abelian anyons and topological quantum computation [J].
Nayak, Chetan ;
Simon, Steven H. ;
Stern, Ady ;
Freedman, Michael ;
Das Sarma, Sankar .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :1083-1159
[6]  
Quigg C., 2013, GAUGE THEORIES STRON
[7]  
Salo V, 2013, LECT NOTES COMPUT SC, V8155, P139, DOI 10.1007/978-3-642-40867-0_10
[8]  
Toffoli T., 1987, Cellular Automata Machines. A New Environment for Modeling
[9]  
Toom A., 1990, NONLINEAR SCI THEORY
[10]  
Toom A., 1995, TOPICS CONT PROBABIL, P117