Periodic orbits in tall laterally heated rectangular cavities

被引:7
作者
Net, Marta [1 ]
Sanchez Umbria, Juan [1 ]
机构
[1] Univ Politecn Cataluna, Dept Fis, Jordi Girona Salgado 1-3,Campus Nord,Modul B4, ES-08034 Barcelona, Spain
关键词
NATURAL-CONVECTION FLOWS; CONTINUATION; BENCHMARK; STABILITY; STEADY;
D O I
10.1103/PhysRevE.95.023102
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This study elucidates the origin of the multiplicity of stable oscillatory flows detected by time integration in tall rectangular cavities heated from the side. By using continuation techniques for periodic orbits, it is shown that initially unstable branches, arising at Hopf bifurcations of the basic steady flow, become stable after crossing Neimark-Sacker points. There are no saddle-node or pitchfork bifurcations of periodic orbits, which could have been alternative mechanisms of stabilization. According to the symmetries of the system, the orbits are either fixed cycles, which retain at any time the center symmetry of the steady flow, or symmetric cycles involving a time shift in the global invariance of the orbit. The bifurcation points along the branches of periodic flows are determined. By using time integrations, with unstable periodic solutions as initial conditions, we determine which of the bifurcations at the limits of the intervals of stable periodic orbits are sub- or supercritical.
引用
收藏
页数:9
相关论文
共 50 条
[31]   Periodic orbits around the collinear libration points [J].
Abouelmagd, Elbaz I. ;
Alzahrani, Faris ;
Hobiny, Aatef ;
Guirao, J. L. G. ;
Alhothuali, M. .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (04) :1716-1727
[32]   Numerical Bifurcation of Hamiltonian Relative Periodic Orbits [J].
Wulff, Claudia ;
Schilder, Frank .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2009, 8 (03) :931-966
[33]   Stabilization of unstable periodic orbits for a chaotic system [J].
Yang, GK ;
Wei, SZ ;
Wei, JH ;
Zeng, JC ;
Wu, ZM ;
Sun, GJ .
SYSTEMS & CONTROL LETTERS, 1999, 38 (01) :21-26
[34]   BIFURCATIONS AND PERIODIC ORBITS IN VARIABLE POPULATION INTERACTIONS [J].
Rebaza, Jorge .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (06) :2997-3012
[35]   A note on the periodic orbits of a kind of Duffing equations [J].
Llibre, Jaume ;
Rodrigues, Ana .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (15) :8358-8365
[36]   Principal Periodic Orbits of the Keplerian Dumbbell System [J].
Dilao, Rui ;
Murteira, Manuel .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (01) :181-207
[37]   Asymmetric periodic orbits in the photogravitational Copenhagen problem [J].
Papadakis, K. ;
Ragos, O. ;
Litzerinos, C. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 227 (01) :102-114
[38]   Periodic orbits of the spatial anisotropic Manev problem [J].
Llibre, Jaume ;
Makhlouf, Ammar .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (12)
[39]   Periodic orbits in nonlinear wave equations on networks [J].
Caputo, J. G. ;
Khames, I. ;
Knippel, A. ;
Panayotaros, P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (37)
[40]   Planar retrograde periodic orbits in the elliptic restricted three-body problem [J].
Martinez-Cacho, Alicia ;
Calvo, Daniel Gil ;
Bombardelli, Claudio ;
Baresi, Nicola .
ACTA ASTRONAUTICA, 2025, 229 :430-465