Parameter estimation for univariate Skew-Normal distribution based on the modified empirical characteristic function

被引:0
作者
Hou, Gege [1 ]
Xu, Ancha [2 ]
Cai, Fengjing [3 ]
Wang, You-Gan [4 ]
机构
[1] Northwestern Polytech Univ, Sch Mech Engn, Xian, Peoples R China
[2] Zhejiang Gongshang Univ, Dept Stat, Hangzhou, Zhejiang, Peoples R China
[3] Wenzhou Univ, Coll Math & Informat Sci, Wenzhou, Peoples R China
[4] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld, Australia
基金
中国国家自然科学基金;
关键词
Skew-normal distribution; empirical characteristic function; M-estimator; bootstrap;
D O I
10.1080/03610926.2021.1883655
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Parameter estimation for the skew-normal distribution is challenging, since the profile likelihood function of shape parameter has a stationary point at zero, which hampers the use of traditional methods, such as maximum likelihood method. We present a modified empirical characteristic function method to perform parameter estimation for the skew-normal distribution. The proposed approach is flexible and easy to implement. We show that the estimators converge to the true values in probability. The simulation study and data analysis suggest that the proposed method performs well, even for the case of small sample size.
引用
收藏
页码:7897 / 7910
页数:14
相关论文
共 24 条
  • [1] The multivariate skew-normal distribution
    Azzalini, A
    DallaValle, A
    [J]. BIOMETRIKA, 1996, 83 (04) : 715 - 726
  • [2] AZZALINI A, 1985, SCAND J STAT, V12, P171
  • [3] AZZALINI A, 2010, METRON, V68
  • [4] Azzalini A., 1999, Journal of the Royal Statistical Society: Series B (Statistical Methodology), V61
  • [5] Maximum penalized likelihood estimation for skew-normal and skew-t distributions
    Azzalini, Adelchi
    Arellano-Valle, Reinaldo B.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (02) : 419 - 433
  • [6] Minimum Distance Estimation for the Generalized Pareto Distribution
    Chen, Piao
    Ye, Zhi-Sheng
    Zhao, Xingqiu
    [J]. TECHNOMETRICS, 2017, 59 (04) : 528 - 541
  • [7] Chiogna M., 1998, J ITAL STAT SOC, V7, P1, DOI DOI 10.1007/BF03178918
  • [8] DiCiccio TJ, 1996, STAT SCI, V11, P189
  • [9] Testing for the symmetric component in skew distributions
    Dolores Jimenez-Gamero, M.
    Virtudes Alba-Fernandez, M.
    Jodra, Pedro
    Chalco-Cano, Yurilev
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (16) : 4713 - 4722
  • [10] Efron B., 1986, STAT SCI, V1