BREGMAN DISTANCES AND KLEE SETS IN BANACH SPACES

被引:1
作者
Fang, Donghui [1 ,2 ]
Song, Wen [3 ]
Li, Chong
机构
[1] Jishou Univ, Sch Math & Comp Sci, Jishou 416000, Peoples R China
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
[3] Harbin Normal Univ, Sch Math Sci, Harbin 150025, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2009年 / 13卷 / 6A期
关键词
Bregman farthest-point map; Klee set; D-maximally approximate compactness; Totally convex function; MONOTONE-OPERATORS; CONVEX-FUNCTIONS; FARTHEST POINTS; CHEBYSHEV SETS; OPTIMIZATION; PROJECTIONS; ALGORITHMS;
D O I
10.11650/twjm/1500405617
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first present some sufficient conditions for the upper semicontinuity and/or the continuity of the Bregman farthest-point map Q(C)(g) and the relative farthest-point map S-C(g) for a nonempty D-maximally approximately compact subset C of a Banach space X. We next present certain sufficient conditions as well as equivalent conditions for a Klee set to be singleton in a Banach space X. Our results extend and/or improve the corresponding ones of [Bauschke, et al., J. Approx. Theory, 158 (2009), pp. 170-183] to infinite dimensional spaces.
引用
收藏
页码:1847 / 1865
页数:19
相关论文
共 24 条
[1]  
[Anonymous], NONLINEAR APPROXIMAT
[2]   GRADIENTS OF CONVEX FUNCTIONS [J].
ASPLUND, E ;
ROCKAFEL.RT .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 139 (MAY) :443-&
[3]   Bregman distances and Chebyshev sets [J].
Bauschke, Heinz H. ;
Wang, Xianfu ;
Ye, Jane ;
Yuan, Xiaoming .
JOURNAL OF APPROXIMATION THEORY, 2009, 159 (01) :3-25
[4]   Bregman distances and Klee sets [J].
Bauschke, Heinz H. ;
Wang, Xianfu ;
Ye, Jane ;
Yuan, Xiaoming .
JOURNAL OF APPROXIMATION THEORY, 2009, 158 (02) :170-183
[5]   Bregman monotone optimization algorithms [J].
Bauschke, HH ;
Borwein, JM ;
Combettes, PL .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (02) :596-636
[6]   Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces [J].
Bauschke, HH ;
Borwein, JM ;
Combettes, PL .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (04) :615-647
[7]  
Bonnanas JF, 2000, PERTURBATION ANAL OP
[8]   NONLINEAR MAXIMAL MONOTONE OPERATORS IN BANACH SPACE [J].
BROWDER, FE .
MATHEMATISCHE ANNALEN, 1968, 175 (02) :89-&
[9]  
Butnariu D, 2003, J CONVEX ANAL, V10, P35
[10]   Iterative averaging of entropic projections for solving stochastic convex feasibility problems [J].
Butnariu, D ;
Censor, Y ;
Reich, S .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 1997, 8 (01) :21-39