Salt Rejection and Water Transport Through Boron Nitride Nanotubes

被引:158
作者
Hilder, Tamsyn A. [1 ]
Gordon, Daniel [1 ]
Chung, Shin-Ho [1 ]
机构
[1] Australian Natl Univ, Res Sch Biol, Computat Biophys Grp, Canberra, ACT 0200, Australia
基金
英国医学研究理事会;
关键词
desalination; filters; membranes; molecular; dynamics; nanotubes; CARBON; ENERGY; PERMEATION; CHANNELS; DYNAMICS;
D O I
10.1002/smll.200900349
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanotube-based water-purification devices have the potential to transform the field of desalination and demineralization through their ability to remove salts and heavy metals without significantly affecting the fast flow of water molecules. Boron nitride nanotubes have shown superior water flow properties compared to carbon nanotubes, and are thus expected to provide a more efficient water purification device. Using molecular dynamics simulations it is shown that a (5, 5) boron nitride nanotube embedded in a silicon nitride membrane can, in principle, obtain 100% salt rejection at concentrations as high as I m owing to a high energy barrier while still allowing water molecules to flow at a rate as high (is 10.7 water molecules per nanosecond (or 0.9268 L m(-2) h(-1)). Furthermore, ions continue to be rejected under the influence of high hydrostatic pressures tip to 612 MPa.. When the nanotube radius is increased to 434 angstrom the tube becomes cation-selective, and at 5.52 angstrom the tube becomes anion-selective.
引用
收藏
页码:2183 / 2190
页数:8
相关论文
共 43 条
[31]   Effect of tip functionalization on transport through vertically oriented carbon nanotube membranes [J].
Majumder, M ;
Chopra, N ;
Hinds, BJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (25) :9062-9070
[32]  
*MPI FESTK STUTTG, 1997, CPMD V3 13
[33]  
MULLINS J, CHEAP DESALINATION
[34]   First-principles calculations on boron-nitride nanotubes [J].
Park, N ;
Cho, J ;
Nakamura, H .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2004, 73 (09) :2469-2472
[35]   Energy Issues in Desalination Processes [J].
Semiat, Raphael .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (22) :8193-8201
[36]   Bandgap energy of graphite-like hexagonal boron nitride [J].
Solozhenko, VL ;
Lazarenko, AG ;
Petitet, JP ;
Kanaev, AV .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2001, 62 (07) :1331-1334
[37]   Fast reverse osmosis using boron nitride and carbon nanotubes [J].
Suk, M. E. ;
Raghunathan, A. V. ;
Aluru, N. R. .
APPLIED PHYSICS LETTERS, 2008, 92 (13)
[38]   Silicon nitride nanosieve membrane [J].
Tong, HD ;
Jansen, HV ;
Gadgil, VJ ;
Bostan, CG ;
Berenschot, E ;
van Rijn, CJM ;
Elwenspoek, M .
NANO LETTERS, 2004, 4 (02) :283-287
[39]   Electron spectroscopy on boron nitride thin films: Comparison of near-surface to bulk electronic properties [J].
Widmayer, P ;
Boyen, HG ;
Ziemann, P ;
Reinke, P ;
Oelhafen, P .
PHYSICAL REVIEW B, 1999, 59 (07) :5233-5241
[40]   Structure and dynamics of water confined in a boron nitride nanotube [J].
Won, Chang Y. ;
Aluru, N. R. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (06) :1812-1818