The stability of hypersurfaces revisited

被引:7
作者
da Silva, Jonatan F. [1 ]
de Lima, Henrique F. [2 ]
Velasquez, Marco Antonio L. [2 ]
机构
[1] Univ Fed Ceara, Dept Matemat, BR-60455760 Fortaleza, Ceara, Brazil
[2] Univ Fed Campina Grande, Dept Matemat, BR-58426970 Campina Grande, Paraiba, Brazil
来源
MONATSHEFTE FUR MATHEMATIK | 2016年 / 179卷 / 02期
关键词
Euclidean space; (r; s)-Stability; Geodesic spheresres; CONSTANT MEAN-CURVATURE; SPACE-FORMS;
D O I
10.1007/s00605-015-0776-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we revisit the problem of characterize (r, s)-stable closed hypersurfaces immersed in a Riemannian space form, which was firstly established in Velasquez et al. (J Math Anal Appl 406:134-146, 2013). With a different approach of that used in the proof of the main theorem of Velasquez et al. (J Math Anal Appl 406: 134-146, 2013), we complete its program showing that a closed hypersurface contained in the Euclidian space Rn+1 and having higher order mean curvatures linearly related is (r, s)-stable if, and only if, it is a geodesic sphere of Rn+1.
引用
收藏
页码:293 / 303
页数:11
相关论文
共 12 条
  • [1] STABLE HYPERSURFACES WITH CONSTANT SCALAR CURVATURE
    ALENCAR, H
    DOCARMO, M
    COLARES, AG
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1993, 213 (01) : 117 - 131
  • [2] STABILITY OF HYPERSURFACES OF CONSTANT MEAN-CURVATURE IN RIEMANNIAN-MANIFOLDS
    BARBOSA, JL
    DOCARMO, M
    ESCHENBURG, J
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1988, 197 (01) : 123 - 138
  • [3] STABILITY OF HYPERSURFACES WITH CONSTANT MEAN-CURVATURE
    BARBOSA, JL
    DOCARMO, M
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1984, 185 (03) : 339 - 353
  • [4] Barbosa JLM, 1997, ANN GLOB ANAL GEOM, V15, P277
  • [5] de Lima HF, 2011, ARCH MATH-BRNO, V47, P119
  • [6] Hardy G.H., 1983, Inequalities, V2
  • [7] Stability of area-preserving variations in space forms
    He, Yijun
    Li, Haizhong
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2008, 34 (01) : 55 - 68
  • [8] Hsiung C.-C., 1954, Math. Scand, V2, P285, DOI 10.7146/math.scand.a-10415
  • [9] Reilly R. C., 1973, J. Differential Geom., V8, P465, DOI [10.4310/jdg/1214431802, DOI 10.4310/JDG/1214431802]
  • [10] 1ST EIGENVALUE OF LAPLACIAN FOR COMPACT SUBMANIFOLDS OF EUCLIDEAN SPACE
    REILLY, RC
    [J]. COMMENTARII MATHEMATICI HELVETICI, 1977, 52 (04) : 525 - 533