ON CONVEX FUNCTIONS AND THE FINITE ELEMENT METHOD

被引:21
|
作者
Aguilera, Nestor E. [1 ,2 ]
Morin, Pedro [1 ,2 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, Santa Fe, Argentina
[2] Univ Nacl Litoral, Santa Fe, Argentina
关键词
finite element method; optimization problems; convex functions; adaptive meshes; VARIATIONAL-PROBLEMS SUBJECT; CONSTRAINT;
D O I
10.1137/080720917
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Many problems of theoretical and practical interest involve finding a convex or concave function. For instance, optimization problems such as finding the projection on the convex functions in H(k)(Omega), or some problems in economics. In the continuous setting and assuming smoothness, the convexity constraints may be given locally by asking the Hessian matrix to be positive semidefinite, but in making discrete approximations two difficulties arise: the continuous solutions may be not smooth, and an adequate discrete version of the Hessian must be given. In this paper we propose a finite element description of the Hessian, and prove convergence under very general conditions, even when the continuous solution is not smooth, working on any dimension, and requiring a linear number of constraints in the number of nodes. Using semidefinite programming codes, we show concrete examples of approximations to optimization problems.
引用
收藏
页码:3139 / 3157
页数:19
相关论文
共 50 条
  • [41] SoftFEM: The Soft Finite Element Method
    Pena, Jose M.
    LaTorre, Antonio
    Jerusalem, Antoine
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2019, 118 (10) : 606 - 630
  • [42] Variational integrators and the finite element method
    Chen, Jing-Bo
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 196 (02) : 941 - 958
  • [43] A DIFFERENTIAL QUADRATURE FINITE ELEMENT METHOD
    Xing, Yufeng
    Liu, Bo
    Liu, Guang
    INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2010, 2 (01) : 207 - 227
  • [44] Crack Propagation by Finite Element Method
    Ricardo, Luiz Carlos H.
    FRATTURA ED INTEGRITA STRUTTURALE, 2018, 12 (43): : 57 - 78
  • [45] Periodic micromagnetic finite element method
    Ai, Fangzhou
    Duan, Jiawei
    Lomakin, Vitaliy
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2025, 615
  • [46] On exact results in the finite element method
    Hlaváček I.
    Křížek M.
    Applications of Mathematics, 2001, 46 (06) : 467 - 478
  • [47] OVERSAMPLING FOR THE MULTISCALE FINITE ELEMENT METHOD
    Henning, Patrick
    Peterseim, Daniel
    MULTISCALE MODELING & SIMULATION, 2013, 11 (04): : 1149 - 1175
  • [48] Multigrid for the mortar finite element method
    Gopalakrishnan, J
    Pasciak, JE
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (03) : 1029 - 1052
  • [49] Mixed moving finite element method
    Zhao, Shengjie
    Chen, Yufu
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 196 (01) : 381 - 391
  • [50] Modelling and Finite Element Method in Dentistry
    Stetiu, Andreea Angela
    Oleksik, Valentin
    Stetiu, Mircea
    Burlibasa, Mihai
    Traistaru, Victor
    Oancea, Luminita
    Bertesteanu, Serban
    Ionescu, Ileana
    ROMANIAN BIOTECHNOLOGICAL LETTERS, 2015, 20 (04): : 10579 - 10584