Micro-tip Cantilever as Low Frequency Microphone

被引:18
作者
Dass, Sumit [1 ]
Jha, Rajan [1 ]
机构
[1] Indian Inst Technol Bhubaneswar, Sch Basic Sci, Nanophoton & Plasmon Lab, Khurja 752050, India
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
关键词
SENSOR; HYDROPHONE;
D O I
10.1038/s41598-018-31062-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a very compact diaphragm free optical microphone consisting a tapered micro-tip in cantilever configuration for detection of low frequency acoustic signals. The change in the light coupling between the micro-tip and the source fiber caused by the acoustic pressure is utilized to detect the external acoustic signal. The sensitivity and working range of the sensor depend on three key factors, the length of the micro-tip cantilever, the distance between the micro-tip and SMF, and the offset between the micro-tip central axis and SMF central axis. Hence, by changing any of these parameters, the performance of the sensor can be easily tuned. Experimental results show that for a cantilever length of 15 mm, the probe has a maximum acoustic sensitivity of 10.63 mV/Pa or - 159.5 dB re 1 V/mu Pa, noise-limited minimum detectable pressure of 19.1 mPa/root Hz and the linear frequency range is 0-400 Hz. The SMF only structure along with photodetector-based interrogation makes this acoustic sensor economical.
引用
收藏
页数:6
相关论文
共 20 条
  • [1] Bolzan Geovana de Paula, 2013, Rev. CEFAC, V15, P455
  • [2] Miniature, high performance, low-cost fiber optic microphone
    Bucaro, JA
    Lagakos, N
    Houston, BH
    Jarzynski, J
    Zalalutdinov, M
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2005, 118 (03) : 1406 - 1413
  • [3] Experimental investigation into vibro-acoustic emission signal processing techniques to quantify leak flow rate in plastic water distribution pipes
    Butterfield, J. D.
    Krynkin, A.
    Collins, R. P.
    Beck, S. B. M.
    [J]. APPLIED ACOUSTICS, 2017, 119 : 146 - 155
  • [4] Pressure compensated fiber laser hydrophone: Modeling and experimentation
    Chandrika, Unnikrishnan Kuttan
    Pallayil, Venugopalan
    Lim, Kian Meng
    Chew, Chye Heng
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2013, 134 (04) : 2710 - 2718
  • [5] Miniature In Vivo Chitosan Diaphragm-Based Fiber-Optic Ultrasound Sensor
    Chen, Li Han
    Chan, Chi Chiu
    Ang, Xiu Min
    Yuan, Weiyong
    Zu, Peng
    Wong, Wei C.
    Zhang, YiFan
    Leong, Kam Chew
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2012, 18 (03) : 1042 - 1049
  • [6] Fiber-optic, cantilever-type acoustic motion velocity hydrophone
    Cranch, G. A.
    Miller, G. A.
    Kirkendall, C. K.
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2012, 132 (01) : 103 - 114
  • [7] Micrometer Wire Assisted Inline Mach-Zehnder Interferometric Curvature Sensor
    Dass, Sumit
    Jha, Rajan
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2016, 28 (01) : 31 - 34
  • [8] Low-noise wideband ultrasound detection using polymer microring resonators
    Huang, Sheng-Wen
    Chen, Sung-Liang
    Ling, Tao
    Maxwell, Adam
    O'Donnell, Matthew
    Guo, L. Jay
    Ashkenazi, Shai
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (19)
  • [9] Photonic-Crystal-Based Fiber Hydrophone With Sub-100 μPa/√Hz Pressure Resolution
    Jan, Catherine
    Jo, Wonuk
    Digonnet, Michel J. F.
    Solgaard, Olav
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2016, 28 (02) : 123 - 126
  • [10] Air-coupled ultrasound detection using capillary-based optical ring resonators
    Kim, Kyu Hyun
    Luo, Wei
    Zhang, Cheng
    Tian, Chao
    Guo, L. Jay
    Wang, Xueding
    Fan, Xudong
    [J]. SCIENTIFIC REPORTS, 2017, 7