Comparison of the orbital properties of Jupiter Trojan asteroids and Trojan dust

被引:7
作者
Liu, Xiaodong [1 ]
Schmidt, Jurgen [1 ]
机构
[1] Univ Oulu, Astron Res Unit, Oulu 90014, Finland
基金
芬兰科学院;
关键词
meteorites; meteors; meteoroids; planets and satellites: rings; minor planets; asteroids:; general; zodiacal dust; celestial mechanics; solar wind; RESTRICTED 3-BODY PROBLEM; SIZE DISTRIBUTION; ZODIACAL DUST; SOLAR-SYSTEM; KUIPER-BELT; CLOUD; MOTION; PARTICLES; EVOLUTION; DYNAMICS;
D O I
10.1051/0004-6361/201832806
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In a previous paper we simulated the orbital evolution of dust particles from the Jupiter Trojan asteroids ejected by the impacts of interplanetary particles, and evaluated their overall configuration in the form of dust arcs. Here we compare the orbital properties of these Trojan dust particles and the Trojan asteroids. Both Trojan asteroids and most of the dust particles are trapped in the Jupiter 1:1 resonance. However, for dust particles, this resonance is modified because of the presence of solar radiation pressure, which reduces the peak value of the semi-major axis distribution. We find also that some particles can be trapped in the Saturn 1:1 resonance and higher order resonances with Jupiter. The distributions of the eccentricity, the longitude of pericenter, and the inclination for Trojans and the dust are compared. For the Trojan asteroids, the peak in the longitude of pericenter distribution is about 60 degrees larger than the longitude of pericenter of Jupiter; in contrast, for Trojan dust this difference is smaller than 60 degrees, and it decreases with decreasing grain size. For the Trojan asteroids and most of the Trojan dust, the Tisserand parameter is distributed in the range of two to three.
引用
收藏
页数:5
相关论文
共 50 条
[31]   Opposition effect of Trojan asteroids [J].
Sheychenko, V. G. ;
Belskaya, I. N. ;
Slyusarev, I. G. ;
Krugly, Yu N. ;
Chiorny, V. G. ;
Gaftonyuk, N. M. ;
Donchev, Z. ;
Ivanova, V. ;
Ibrahimov, M. A. ;
Ehgamberdiev, Sh A. ;
Molotov, I. E. .
ICARUS, 2012, 217 (01) :202-208
[32]   Surface Compositions of Trojan Asteroids [J].
Joshua P. Emery ;
Richard P. Binzel ;
Daniel T. Britt ;
Michael E. Brown ;
Carly J. A. Howett ;
Audrey C. Martin ;
Mario D. Melita ;
Ana Carolina Souza-Feliciano ;
Ian Wong .
Space Science Reviews, 2024, 220
[33]   Spectroscopic search for water ice on Jovian Trojan asteroids [J].
Yang, Bin ;
Jewitt, David .
ASTRONOMICAL JOURNAL, 2007, 134 (01) :223-228
[34]   Optimized Nekhoroshev stability estimates for the Trojan asteroids with a symplectic mapping model of co-orbital motion [J].
Efthymiopoulos, C ;
Sándor, Z .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2005, 364 (01) :253-271
[35]   SHAPES AND ROTATIONAL PROPERTIES OF THE SELECTED HILDA AND TROJAN ASTEROIDS [J].
Gritsevich, M. ;
Sonnett, S. ;
Torppa, J. ;
Muinonen, K. ;
Mainzer, A. ;
Penttila, A. ;
Martikainen, J. ;
Grav, T. ;
Masiero, J. ;
Bauer, J. ;
Kramer, E. .
METEORITICS & PLANETARY SCIENCE, 2017, 52 :A115-A115
[36]   The orbit of 2010 TK7: possible regions of stability for other Earth Trojan asteroids [J].
Dvorak, R. ;
Lhotka, C. ;
Zhou, L. .
ASTRONOMY & ASTROPHYSICS, 2012, 541
[37]   Masses of the Trojan Groups of Jupiter [J].
E. V. Pitjeva ;
N. P. Pitjev .
Astronomy Letters, 2019, 45 :855-860
[38]   Collisions, cosmic radiation and the colors of the Trojan asteroids [J].
Melita, M. D. ;
Strazzulla, G. ;
Bar-Nun, A. .
ICARUS, 2009, 203 (01) :134-139
[39]   Predictions for the detection of Earth and Mars Trojan asteroids by the Gaia satellite [J].
Todd, M. ;
Tanga, P. ;
Coward, D. M. ;
Zadnik, M. G. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 437 (04) :4019-4026
[40]   A semianalytical model for the motion of the Trojan asteroids:: Proper elements and families [J].
Beaugé, C ;
Roig, F .
ICARUS, 2001, 153 (02) :391-415