Comparison of the orbital properties of Jupiter Trojan asteroids and Trojan dust

被引:7
|
作者
Liu, Xiaodong [1 ]
Schmidt, Jurgen [1 ]
机构
[1] Univ Oulu, Astron Res Unit, Oulu 90014, Finland
来源
ASTRONOMY & ASTROPHYSICS | 2018年 / 614卷
基金
芬兰科学院;
关键词
meteorites; meteors; meteoroids; planets and satellites: rings; minor planets; asteroids:; general; zodiacal dust; celestial mechanics; solar wind; RESTRICTED 3-BODY PROBLEM; SIZE DISTRIBUTION; ZODIACAL DUST; SOLAR-SYSTEM; KUIPER-BELT; CLOUD; MOTION; PARTICLES; EVOLUTION; DYNAMICS;
D O I
10.1051/0004-6361/201832806
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In a previous paper we simulated the orbital evolution of dust particles from the Jupiter Trojan asteroids ejected by the impacts of interplanetary particles, and evaluated their overall configuration in the form of dust arcs. Here we compare the orbital properties of these Trojan dust particles and the Trojan asteroids. Both Trojan asteroids and most of the dust particles are trapped in the Jupiter 1:1 resonance. However, for dust particles, this resonance is modified because of the presence of solar radiation pressure, which reduces the peak value of the semi-major axis distribution. We find also that some particles can be trapped in the Saturn 1:1 resonance and higher order resonances with Jupiter. The distributions of the eccentricity, the longitude of pericenter, and the inclination for Trojans and the dust are compared. For the Trojan asteroids, the peak in the longitude of pericenter distribution is about 60 degrees larger than the longitude of pericenter of Jupiter; in contrast, for Trojan dust this difference is smaller than 60 degrees, and it decreases with decreasing grain size. For the Trojan asteroids and most of the Trojan dust, the Tisserand parameter is distributed in the range of two to three.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Dust arcs in the region of Jupiter's Trojan asteroids
    Liu, Xiaodong
    Schmidt, Juergen
    ASTRONOMY & ASTROPHYSICS, 2018, 609
  • [2] Trojan asteroids and the co-orbital dust ring of Venus
    Xu, Yang-Bo
    Zhou, Lei
    Lhotka, Christoph
    Zhou, Li-Yong
    Ip, Wing-Huen
    ASTRONOMY & ASTROPHYSICS, 2022, 666
  • [3] Influence of the Yarkovsky force on Jupiter Trojan asteroids
    Hellmich, S.
    Mottola, S.
    Hahn, G.
    Kuehrt, E.
    de Niem, D.
    ASTRONOMY & ASTROPHYSICS, 2019, 630
  • [4] Lightcurves of 6 Jupiter Trojan asteroids
    Melita, M. D.
    Duffard, R.
    Williams, I. P.
    Jones, D. C.
    Licandro, J.
    Ortiz, J. L.
    PLANETARY AND SPACE SCIENCE, 2010, 58 (7-8) : 1035 - 1039
  • [5] Physical properties and orbital stability of the Trojan asteroids
    Melita, M. D.
    Licandro, J.
    Jones, D. C.
    Williams, I. P.
    ICARUS, 2008, 195 (02) : 686 - 697
  • [6] THE 3-4 μm SPECTRA OF JUPITER TROJAN ASTEROIDS
    Brown, M. E.
    ASTRONOMICAL JOURNAL, 2016, 152 (06)
  • [7] On the origin of the Trojan asteroids: Effects of Jupiter's mass accretion and radial migration
    Fleming, HJ
    Hamilton, DP
    ICARUS, 2000, 148 (02) : 479 - 493
  • [8] Search strategies for Trojan asteroids in the inner Solar System
    Todd, M.
    Coward, D. M.
    Zadnik, M. G.
    PLANETARY AND SPACE SCIENCE, 2012, 73 (01) : 39 - 43
  • [9] A Crater Chronology for the Jupiter's Trojan Asteroids
    Marchi, S.
    Nesvorny, D.
    Vokrouhlicky, D.
    Bottke, W. F.
    Levison, H.
    ASTRONOMICAL JOURNAL, 2023, 166 (06)
  • [10] Origin and Evolution of Jupiter's Trojan Asteroids
    Bottke, William F.
    Marschall, Raphael
    Nesvorny, David
    Vokrouhlicky, David
    SPACE SCIENCE REVIEWS, 2023, 219 (08)