A hyperbolic Lindstedt-Poincar, method for homoclinic motion of a kind of strongly nonlinear autonomous oscillators

被引:20
作者
Chen, Y. Y. [1 ,2 ]
Chen, S. H. [1 ]
Sze, K. Y. [2 ]
机构
[1] Sun Yat Sen Univ, Dept Appl Mech & Engn, Guangzhou 510275, Guangdong, Peoples R China
[2] Univ Hong Kong, Dept Mech Engn, Pokfulam, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Lindstedt-Poincare method; Hyperbolic function; Nonlinear autonomous oscillator; Homoclinic orbit; PERTURBATION-INCREMENTAL METHOD; LIMIT-CYCLES; BIFURCATIONS;
D O I
10.1007/s10409-009-0276-0
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A hyperbolic Lindstedt-Poincar, method is presented to determine the homoclinic solutions of a kind of nonlinear oscillators, in which critical value of the homoclinic bifurcation parameter can be determined. The generalized Li,nard oscillator is studied in detail, and the present method's predictions are compared with those of Runge- Kutta method to illustrate its accuracy.
引用
收藏
页码:721 / 729
页数:9
相关论文
共 15 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS
[2]   Predicting homoclinic bifurcations in planar autonomous systems [J].
Belhaq, M ;
Lakrad, F ;
Fahsi, A .
NONLINEAR DYNAMICS, 1999, 18 (04) :303-310
[3]   Prediction of homoclinic bifurcation: the elliptic averaging method [J].
Belhaq, M ;
Lakrad, F .
CHAOS SOLITONS & FRACTALS, 2000, 11 (14) :2251-2258
[4]   Homoclinic connections in strongly self-excited nonlinear oscillators: The Melnikov function and the elliptic Lindstedt-Poincare method [J].
Belhaq, M ;
Fiedler, B ;
Lakrad, F .
NONLINEAR DYNAMICS, 2000, 23 (01) :67-86
[5]   Stability and bifurcations of limit cycles by the perturbation-incremental method [J].
Chan, HSY ;
Chung, KW ;
Xu, Z .
JOURNAL OF SOUND AND VIBRATION, 1997, 206 (04) :589-604
[6]   A hyperbolic perturbation method for determining homoclinic solution of certain strongly nonlinear autonomous oscillators [J].
Chen, S. H. ;
Chen, Y. Y. ;
Sze, K. Y. .
JOURNAL OF SOUND AND VIBRATION, 2009, 322 (1-2) :381-392
[7]  
Chen SH, 2000, COMMUN NUMER METH EN, V16, P301, DOI 10.1002/(SICI)1099-0887(200005)16:5<301::AID-CNM337>3.0.CO
[8]  
2-#
[9]   Studies on structural safety in stochastically excited Duffing oscillator with double potential wells [J].
Gan, Chunbiao ;
He, Shimin .
ACTA MECHANICA SINICA, 2007, 23 (05) :577-583
[10]   ON INFINITE PERIOD BIFURCATIONS WITH AN APPLICATION TO ROLL WAVES [J].
MERKIN, JH ;
NEEDHAM, DJ .
ACTA MECHANICA, 1986, 60 (1-2) :1-16