A hyperbolic Lindstedt-Poincar, method for homoclinic motion of a kind of strongly nonlinear autonomous oscillators

被引:20
作者
Chen, Y. Y. [1 ,2 ]
Chen, S. H. [1 ]
Sze, K. Y. [2 ]
机构
[1] Sun Yat Sen Univ, Dept Appl Mech & Engn, Guangzhou 510275, Guangdong, Peoples R China
[2] Univ Hong Kong, Dept Mech Engn, Pokfulam, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Lindstedt-Poincare method; Hyperbolic function; Nonlinear autonomous oscillator; Homoclinic orbit; PERTURBATION-INCREMENTAL METHOD; LIMIT-CYCLES; BIFURCATIONS;
D O I
10.1007/s10409-009-0276-0
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A hyperbolic Lindstedt-Poincar, method is presented to determine the homoclinic solutions of a kind of nonlinear oscillators, in which critical value of the homoclinic bifurcation parameter can be determined. The generalized Li,nard oscillator is studied in detail, and the present method's predictions are compared with those of Runge- Kutta method to illustrate its accuracy.
引用
收藏
页码:721 / 729
页数:9
相关论文
共 15 条