Growth Equation of the General Fractional Calculus

被引:48
作者
Kochubei, Anatoly N. [1 ]
Kondratiev, Yuri [2 ]
机构
[1] Natl Acad Sci Ukraine, Inst Math, Tereshchenkivska 3, UA-01024 Kiev, Ukraine
[2] Univ Bielefeld, Dept Math, D-33615 Bielefeld, Germany
关键词
generalized fractional derivatives; growth equation; Mittag-Leffler function;
D O I
10.3390/math7070615
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Cauchy problem (D(k)u)(t)=lambda u(t), u(0)=1, where D(k) is the general convolutional derivative introduced in the paper (A. N. Kochubei, Integral Equations Oper. Theory 71 (2011), 583-600), lambda>0. The solution is a generalization of the function t & x21a6;E alpha(lambda t alpha), where 0<alpha<1, E alpha is the Mittag-Leffler function. The asymptotics of this solution, as t ->infinity, are studied.
引用
收藏
页数:8
相关论文
共 23 条
[1]  
Allen R. G. D., 1968, MACROECONOMIC THEORY
[2]  
[Anonymous], 1974, Introduction to the Theory and Application of the Laplace Transformation
[3]  
[Anonymous], 2019, HDB FRACTIONAL CALCU
[4]  
[Anonymous], 2000, Fract. Calc. Appl. Anal
[5]  
Arendt W, 2011, MG MATH, V96, pIX, DOI 10.1007/978-3-0348-0087-7
[6]   A piecewise spectral-collocation method for solving fractional Riccati differential equation in large domains [J].
Azin, H. ;
Mohammadi, F. ;
Tenreiro Machado, J. A. .
COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (03)
[7]   Long memory processes and fractional integration in econometrics [J].
Baillie, RT .
JOURNAL OF ECONOMETRICS, 1996, 73 (01) :5-59
[8]   Fine scales of decay of operator semigroups [J].
Batty, Charles J. K. ;
Chill, Ralph ;
Tomilov, Yuri .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2016, 18 (04) :853-929
[9]  
Gorenflo R., 2020, Mittag-Leffler Functions, Related Topics and Applications, DOI DOI 10.1007/978-3-662-61550-8
[10]   TYPICAL SPECTRAL SHAPE OF AN ECONOMIC VARIABLE [J].
GRANGER, CWJ .
ECONOMETRICA, 1966, 34 (01) :150-&