QUASIPERIODIC SOLUTIONS OF THE NEGATIVE-ORDER KORTEWEG-DE VRIES HIERARCHY

被引:3
作者
Chen, Jinbing [1 ]
机构
[1] Southeast Univ, Sch Math, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
nKdV hierarchy; backward Neumann system; quasiperiodic solution; CAMASSA-HOLM EQUATION; NONLINEAR EQUATIONS; OPERATORS;
D O I
10.1134/S0040577919060035
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a complete algorithm for deriving quasiperiodic solutions of the negative-order KdV (nKdV) hierarchy using the backward Neumann systems. Starting with the nonlinearization of a Lax pair, the nKdV hierarchy reduces to a family of backward Neumann systems via separating temporal and spatial variables. We show that the backward Neumann systems are integrable in the Liouville sense and their involutive solutions yield finite-parameter solutions of the nKdV hierarchy. We present the negative-order Novikov equation, which specifies a finite-dimensional invariant subspace of nKdV flows. Using the Abel-Jacobi variable, we integrate the nKdV flows with Abel-Jacobi solutions on the Jacobian variety of a Riemann surface. Finally, we study the Riemann-Jacobi inversion of the Abel-Jacobi solutions, whence we obtain some quasiperiodic solutions of the nKdV hierarchy.
引用
收藏
页码:798 / 822
页数:25
相关论文
共 43 条
  • [1] HIERARCHY OF LOWER KORTEWEG-DEVRIES EQUATIONS AND SUPERSYMMETRY STRUCTURE OF MIURA-TRANSFORMATIONS
    ANDREEV, VA
    SHMAKOVA, MV
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (08) : 3491 - 3506
  • [2] [Anonymous], ADV SER MATH PHYS
  • [3] [Anonymous], 1978, Principles of algebraic geometry
  • [4] Arnold, 2003, MATH METHODS CLASSIC
  • [5] AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS
    CAMASSA, R
    HOLM, DD
    [J]. PHYSICAL REVIEW LETTERS, 1993, 71 (11) : 1661 - 1664
  • [6] Cao C W., 1990, Nonlinear Physics, Research Reports in Physics, pp 68
  • [7] Relation between the Kadometsev-Petviashvili equation and the confocal involutive system
    Cao, CW
    Wu, YT
    Geng, XG
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (08) : 3948 - 3970
  • [8] Rogue periodic waves of the modified KdV equation
    Chen, Jinbing
    Pelinovsky, Dmitry E.
    [J]. NONLINEARITY, 2018, 31 (05) : 1955 - 1980
  • [9] Rogue periodic waves of the focusing nonlinear Schrodinger equation
    Chen, Jinbing
    Pelinovsky, Dmitry E.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2210):
  • [10] Quasi-periodic solutions to a negative-order integrable system of 2-component KdV equation
    Chen, Jinbing
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (03)