Crossover in Membranes for Aqueous Soluble Organic Redox Flow Batteries

被引:47
作者
Small, Leo J. [1 ]
Pratt, Harry D., III [1 ]
Anderson, Travis M. [1 ]
机构
[1] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA
关键词
EXCHANGE; WATER; PERFORMANCE; STORAGE; PROGRESS; ANOLYTE; CATION;
D O I
10.1149/2.0681912jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The performances of five commercial anion exchange membranes are compared in aqueous soluble organic redox flow batteries (RFBs) containing the TEMPO and methyl viologen (MV) redox pair. Capacities between RFBs with different membranes are found to vary by > 50% of theoretical after 100 cycles. This capacity loss is attributed to crossover of TEMPO and MV across the membrane and is dominated by either diffusion, migration, or electroosmotic drag, depending on the membrane. Counterintuitively, the worst performing membranes display the lowest diffusion coefficients for TEMPO and MV, instead seeing high crossover fluxes due to electroosmotic drag. This trend is rationalized in terms of the ion exchange capacity and water content of these membranes. Decreasing these values in an effort to minimize diffusion of the redox-active species while the RFB rests can inadvertently exacerbate conditions for electroosmotic drag when theRFBoperates. Using fundamental membrane properties, it is demonstrated that the relative magnitude of crossover and capacity loss during RFB operation may be understood. (C) The Author(s) 2019. Published by ECS.
引用
收藏
页码:A2536 / A2542
页数:7
相关论文
共 34 条
[1]   A Neutral pH Aqueous Organic-Organometallic Redox Flow Battery with Extremely High Capacity Retention [J].
Beh, Eugene S. ;
De Porcellinis, Diana ;
Gracia, Rebecca L. ;
Xia, Kay T. ;
Gordon, Roy G. ;
Aziz, Michael J. .
ACS ENERGY LETTERS, 2017, 2 (03) :639-644
[2]   Redox Flow Batteries: An Engineering Perspective [J].
Chalamala, Babu R. ;
Soundappan, Thiagarajan ;
Fisher, Graham R. ;
Anstey, Mitchell R. ;
Viswanathan, Vilayanur V. ;
Perry, Michael L. .
PROCEEDINGS OF THE IEEE, 2014, 102 (06) :976-999
[3]   Transport Property Requirements for Flow Battery Separators [J].
Darling, Robert ;
Gallagher, Kevin ;
Xie, Wei ;
Su, Liang ;
Brushett, Fikile .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (01) :A5029-A5040
[4]   A Sulfonate-Functionalized Viologen Enabling Neutral Cation Exchange, Aqueous Organic Redox Flow Batteries toward Renewable Energy Storage [J].
DeBruler, Camden ;
Hu, Bo ;
Moss, Jared ;
Luo, Jian ;
Liu, T. Leo .
ACS ENERGY LETTERS, 2018, 3 (03) :663-668
[5]   Cost-driven materials selection criteria for redox flow battery electrolytes [J].
Dmello, Rylan ;
Milshtein, Jarrod D. ;
Brushett, Fikile R. ;
Smith, Kyle C. .
JOURNAL OF POWER SOURCES, 2016, 330 :261-272
[6]   High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries [J].
Hendriks, Koen H. ;
Robinson, Sophia G. ;
Braten, Miles N. ;
Sevov, Christo S. ;
Helms, Brett A. ;
Sigman, Matthew S. ;
Minteer, Shelley D. ;
Sanford, Melanie S. .
ACS CENTRAL SCIENCE, 2018, 4 (02) :189-196
[7]   Fluoride removal from diluted solutions by Donnan dialysis with anion-exchange membranes [J].
Hichour, M ;
Persin, F ;
Molénat, J ;
Sandeaux, J ;
Gavach, C .
DESALINATION, 1999, 122 (01) :53-62
[8]   Boosting the energy efficiency and power performance of neutral aqueous organic redox flow batteries [J].
Hu, Bo ;
Seefeldt, Christopher ;
DeBruler, Camden ;
Liu, T. Leo .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (42) :22137-22145
[9]   The lightest organic radical cation for charge storage in redox flow batteries [J].
Huang, Jinhua ;
Pan, Baofei ;
Duan, Wentao ;
Wei, Xiaoliang ;
Assary, Rajeev S. ;
Su, Liang ;
Brushett, Fikile R. ;
Cheng, Lei ;
Liao, Chen ;
Ferrandon, Magali S. ;
Wang, Wei ;
Zhang, Zhengcheng ;
Burrell, Anthony K. ;
Curtiss, Larry A. ;
Shkrob, Ilya A. ;
Moore, Jeffrey S. ;
Zhang, Lu .
SCIENTIFIC REPORTS, 2016, 6
[10]   Through-Plane Conductivities of Membranes for Nonaqueous Redox Flow Batteries [J].
Hudak, Nicholas S. ;
Small, Leo J. ;
Pratt, Harry D., III ;
Anderson, Travis M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (10) :A2188-A2194